Maple 2018. 2 Integration Test Results
on the problems in "0 Independent test suites"
Test results for the 48 problems in "Apostol Problems.txt"
Problem 7: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(8 x^{3}+27\right)^{2 / 3} \mathrm{~d} x
$$

Optimal(type 2, 11 leaves, 1 step):

$$
\frac{\left(8 x^{3}+27\right)^{5 / 3}}{40}
$$

Result(type 2, 26 leaves):

$$
\frac{(3+2 x)\left(4 x^{2}-6 x+9\right)\left(8 x^{3}+27\right)^{2 / 3}}{40}
$$

Problem 9: Unable to integrate problem.

$$
\int \frac{x}{\sqrt{1+x^{2}+\left(x^{2}+1\right)^{3 / 2}}} \mathrm{~d} x
$$

Optimal(type 2, 26 leaves, 3 steps):

$$
\frac{2 \sqrt{\left(x^{2}+1\right)\left(\sqrt{x^{2}+1}+1\right)}}{\sqrt{x^{2}+1}}
$$

Result(type 8, 18 leaves):

$$
\int \frac{x}{\sqrt{1+x^{2}+\left(x^{2}+1\right)^{3 / 2}}} \mathrm{~d} x
$$

Test results for the 12 problems in "Bondarenko Problems.txt"
Problem 3: Result is not expressed in closed-form.

$$
\int \frac{\ln (1+x)}{x \sqrt{1+\sqrt{1+x}}} \mathrm{~d} x
$$

Optimal(type 4, 224 leaves, ? steps):
$-8 \operatorname{arctanh}(\sqrt{1+\sqrt{1+x}})-\operatorname{arctanh}\left(\frac{\sqrt{1+\sqrt{1+x}} \sqrt{2}}{2}\right) \ln (1+x) \sqrt{2}+2 \operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right) \ln (1-\sqrt{1+\sqrt{1+x}}) \sqrt{2}-2 \operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right) \ln (1$

$$
\begin{aligned}
& +\sqrt{1+\sqrt{1+x}}) \sqrt{2}+\operatorname{polylog}\left(2,-\frac{\sqrt{2}(1-\sqrt{1+\sqrt{1+x}})}{2-\sqrt{2}}\right) \sqrt{2}-\operatorname{polylog}\left(2, \frac{\sqrt{2}(1-\sqrt{1+\sqrt{1+x}})}{2+\sqrt{2}}\right) \sqrt{2}-\operatorname{polylog}(2, \\
& \left.-\frac{\sqrt{2}(1+\sqrt{1+\sqrt{1+x}})}{2-\sqrt{2}}\right) \sqrt{2}+\operatorname{polylog}\left(2, \frac{\sqrt{2}(1+\sqrt{1+\sqrt{1+x}})}{2+\sqrt{2}}\right) \sqrt{2}-\frac{2 \ln (1+x)}{\sqrt{1+\sqrt{1+x}}}
\end{aligned}
$$

Result(type 7, 485 leaves):

$$
\begin{aligned}
& \ln (1+x) \ln (\sqrt{1+\sqrt{1+x}}-\sqrt{2}) \sqrt{2}-2 \ln (\sqrt{1+\sqrt{1+x}}-\sqrt{2}) \ln \left(\frac{\sqrt{1+\sqrt{1+x}}-1}{\sqrt{2}-1}\right) \sqrt{2}-2 \ln (\sqrt{1+\sqrt{1+x}} \\
& -\sqrt{2}) \ln \left(\frac{1+\sqrt{1+\sqrt{1+x}}}{1+\sqrt{2}}\right) \sqrt{2}-2 \operatorname{dilog}\left(\frac{\sqrt{1+\sqrt{1+x}}-1}{\sqrt{2}-1}\right) \sqrt{2}-2 \operatorname{dilog}\left(\frac{1+\sqrt{1+\sqrt{1+x}}}{1+\sqrt{2}}\right) \sqrt{2}-\ln (1+x) \ln (\sqrt{1+\sqrt{1+x}} \\
& +\sqrt{2}) \sqrt{2}+2 \ln (\sqrt{1+\sqrt{1+x}}+\sqrt{2}) \ln \left(\frac{\sqrt{1+\sqrt{1+x}}-1}{-1-\sqrt{2}}\right) \sqrt{2}+2 \ln (\sqrt{1+\sqrt{1+x}}+\sqrt{2}) \ln \left(\frac{1+\sqrt{1+\sqrt{1+x}}}{-\sqrt{2}+1}\right) \sqrt{2} \\
& +2 \operatorname{dilog}\left(\frac{\sqrt{1+\sqrt{1+x}}-1}{-1-\sqrt{2}}\right) \sqrt{2}+2 \operatorname{dilog}\left(\frac{1+\sqrt{1+\sqrt{1+x}}}{-\sqrt{2}+1}\right) \sqrt{2}-4 \sum_{\left.-\alpha=\operatorname{RootOf}^{\prime} \ell^{2}-2\right)} \frac{1}{8}\left(\sum _ { - } \left(\ln \left(\sqrt{1+\sqrt{1+x}}-{ }_{-} \alpha\right) \ln (1+x)\right.\right. \\
& -2 \operatorname{dilog}\left(\frac{\sqrt{1+\sqrt{1+x}}-1}{__{-1}}\right)-2 \ln \left(\sqrt{1+\sqrt{1+x}}-{ }_{-} \alpha\right) \ln \left(\frac{\sqrt{1+\sqrt{1+x}}-1}{\alpha_{-1}}\right)-2 \operatorname{dilog}\left(\frac{1+\sqrt{1+\sqrt{1+x}}}{1+_\alpha}\right)-2 \ln (\sqrt{1+\sqrt{1+x}} \\
& \left.\left.\left.-_{-} \alpha\right) \ln \left(\frac{1+\sqrt{1+\sqrt{1+x}}}{1+{ }_{-} \alpha}\right)\right)\right)=\frac{2 \ln (1+x)}{\sqrt{1+\sqrt{1+x}}}-8 \operatorname{arctanh}(\sqrt{1+\sqrt{1+x}})
\end{aligned}
$$

Problem 5: Unable to integrate problem.

$$
\int \sqrt{1+\sqrt{x}+\sqrt{1+2 x+2 \sqrt{x}}} \mathrm{~d} x
$$

Optimal(type 2, 55 leaves, 2 steps):

$$
\frac{2\left(2+6 x^{3 / 2}+\sqrt{x}-(2-\sqrt{x}) \sqrt{1+2 x+2 \sqrt{x}}\right) \sqrt{1+\sqrt{x}+\sqrt{1+2 x+2 \sqrt{x}}}}{15 \sqrt{x}}
$$

Result(type 8, 21 leaves):

$$
\int \sqrt{1+\sqrt{x}+\sqrt{1+2 x+2 \sqrt{x}}} \mathrm{~d} x
$$

Problem 6: Unable to integrate problem.

$$
\int \sqrt{\sqrt{2}+\sqrt{x}+\sqrt{2+2 x+2 \sqrt{2} \sqrt{x}}} \mathrm{~d} x
$$

Optimal(type 2, 78 leaves, 3 steps):

$$
\frac{2 \sqrt{2}\left(4+3 x^{3 / 2} \sqrt{2}+\sqrt{2} \sqrt{x}-\sqrt{2}(2 \sqrt{2}-\sqrt{x}) \sqrt{1+x+\sqrt{2} \sqrt{x}}\right) \sqrt{\sqrt{2}+\sqrt{x}+\sqrt{2} \sqrt{1+x+\sqrt{2} \sqrt{x}}}}{15 \sqrt{x}}
$$

Result(type 8, 26 leaves):

$$
\int \sqrt{\sqrt{2}+\sqrt{x}+\sqrt{2+2 x+2 \sqrt{2} \sqrt{x}}} \mathrm{~d} x
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{x+\sqrt{1+x}}}{x^{2}} d x
$$

Optimal(type 3, 59 leaves, 7 steps):

$$
-\frac{\arctan \left(\frac{3+\sqrt{1+x}}{2 \sqrt{x+\sqrt{1+x}}}\right)}{4}+\frac{3 \operatorname{arctanh}\left(\frac{1-3 \sqrt{1+x}}{2 \sqrt{x+\sqrt{1+x}}}\right)}{4}-\frac{\sqrt{x+\sqrt{1+x}}}{x}
$$

Result(type 3, 297 leaves):

$$
\begin{aligned}
& \left.-\frac{\left((\sqrt{1+x}-1)^{2}+3 \sqrt{1+x}-2\right)^{3 / 2}}{2(\sqrt{1+x}-1)}+\frac{3 \sqrt{(\sqrt{1+x}-1)^{2}+3 \sqrt{1+x}-2}}{4}+\frac{\ln \left(\frac{1}{2}+\sqrt{1+x}+\sqrt{(\sqrt{1+x}-1)^{2}+3 \sqrt{1+x}-2}\right)}{2}\right) \\
& \\
& -\frac{3 \operatorname{arctanh}\left(\frac{-1+3 \sqrt{1+x}}{\left.2 \sqrt{(\sqrt{1+x}-1)^{2}+3 \sqrt{1+x}-2}\right)}\right.}{4}+\frac{(2 \sqrt{1+x}+1) \sqrt{(\sqrt{1+x}-1)^{2}+3 \sqrt{1+x}-2}}{4}-\frac{\left((1+\sqrt{1+x})^{2}-\sqrt{1+x}-2\right)^{3 / 2}}{2(1+\sqrt{1+x})} \\
& \\
& -\frac{\sqrt{(1+\sqrt{1+x})^{2}-\sqrt{1+x}-2}}{4}-\frac{\ln \left(\frac{1}{2}+\sqrt{1+x}+\sqrt{(1+\sqrt{1+x})^{2}-\sqrt{1+x}-2}\right)}{2}+\frac{\arctan \left(\frac{-3-\sqrt{1+x}}{\left.2 \sqrt{(1+\sqrt{1+x})^{2}-\sqrt{1+x}-2}\right)}\right.}{4} \\
& \quad+\frac{(2 \sqrt{1+x}+1) \sqrt{(1+\sqrt{1+x})^{2}-\sqrt{1+x}-2}}{4}
\end{aligned}
$$

Problem 8: Unable to integrate problem.

$$
\int \sqrt{\frac{1}{x}+\sqrt{1+\frac{1}{x}}} \mathrm{~d} x
$$

Optimal(type 3, 72 leaves, 7 steps):

$$
\frac{\arctan \left(\frac{3+\sqrt{1+\frac{1}{x}}}{2 \sqrt{\frac{1}{x}+\sqrt{1+\frac{1}{x}}}}\right)}{4}-\frac{3 \operatorname{arctanh}\left(\frac{1-3 \sqrt{1+\frac{1}{x}}}{2 \sqrt{\frac{1}{x}+\sqrt{1+\frac{1}{x}}}}\right)}{4}+x \sqrt{\frac{1}{x}+\sqrt{1+\frac{1}{x}}}
$$

Result(type 8, 15 leaves):

$$
\int \sqrt{\frac{1}{x}+\sqrt{1+\frac{1}{x}}} \mathrm{~d} x
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{1+\mathrm{e}^{-x}}}{-\mathrm{e}^{-x}+\mathrm{e}^{x}} \mathrm{~d} x
$$

Optimal(type 3, 19 leaves, 6 steps):

$$
-\operatorname{arctanh}\left(\frac{\sqrt{1+\mathrm{e}^{-x}} \sqrt{2}}{2}\right) \sqrt{2}
$$

Result(type 3, 48 leaves):

$$
-\frac{\sqrt{\frac{\mathrm{e}^{x}+1}{\mathrm{e}^{x}}} \mathrm{e}^{x} \sqrt{2} \operatorname{arctanh}\left(\frac{\left(1+3 \mathrm{e}^{x}\right) \sqrt{2}}{4 \sqrt{\left(\mathrm{e}^{x}\right)^{2}+\mathrm{e}^{x}}}\right)}{2 \sqrt{\mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)}}
$$

Problem 11: Unable to integrate problem.

$$
\int \cosh (x) \ln \left(\cosh (x)^{2}+\sinh (x)\right)^{2} \mathrm{~d} x
$$

Optimal(type 4, 312 leaves, 28 steps):
$-2 \ln \left(1+\sinh (x)+\sinh (x)^{2}\right)+8 \sinh (x)-4 \ln \left(1+\sinh (x)+\sinh (x)^{2}\right) \sinh (x)+\ln \left(1+\sinh (x)+\sinh (x)^{2}\right)^{2} \sinh (x)+\ln \left(1+\sinh (x)+\sinh (x)^{2}\right) \ln (1$

$$
+2 \sinh (x)-\mathrm{I} \sqrt{3})(1-\mathrm{I} \sqrt{3})-\frac{\ln (1+2 \sinh (x)-\mathrm{I} \sqrt{3})^{2}(1-\mathrm{I} \sqrt{3})}{2}-\ln (1+2 \sinh (x)-\mathrm{I} \sqrt{3}) \ln \left(-\frac{\mathrm{I}}{6}(1+2 \sinh (x)+\mathrm{I} \sqrt{3}) \sqrt{3}\right)(1
$$

$$
-\mathrm{I} \sqrt{3})-\operatorname{polylog}\left(2, \frac{(\mathrm{I}+2 \mathrm{I} \sinh (x)+\sqrt{3}) \sqrt{3}}{6}\right)(1-\mathrm{I} \sqrt{3})+\ln \left(1+\sinh (x)+\sinh (x)^{2}\right) \ln (1+2 \sinh (x)+\mathrm{I} \sqrt{3})(1+\mathrm{I} \sqrt{3})
$$

$$
\begin{aligned}
& \quad-\frac{\ln (1+2 \sinh (x)+\mathrm{I} \sqrt{3})^{2}(1+\mathrm{I} \sqrt{3})}{2}-\ln (1+2 \sinh (x)+\mathrm{I} \sqrt{3}) \ln \left(\frac{\mathrm{I}}{6}(1+2 \sinh (x)-\mathrm{I} \sqrt{3}) \sqrt{3}\right)(1+\mathrm{I} \sqrt{3})-\operatorname{polylog}(2, \\
& \left.\quad \frac{(-\mathrm{I}-2 \mathrm{I} \sinh (x)+\sqrt{3}) \sqrt{3}}{6}\right)(1+\mathrm{I} \sqrt{3})-4 \arctan \left(\frac{(1+2 \sinh (x)) \sqrt{3}}{3}\right) \sqrt{3} \\
& \text { Result (type 8, } 15 \text { leaves) : } \\
& \quad \int \cosh (x) \ln \left(\cosh (x)^{2}+\sinh (x)\right)^{2} \mathrm{~d} x
\end{aligned}
$$

Test results for the 4 problems in "Bronstein Problems.txt"
Problem 4: Unable to integrate problem.

$$
\int \frac{5 x^{2}+3\left(\mathrm{e}^{x}+x\right)^{1 / 3}+\mathrm{e}^{x}\left(2 x^{2}+3 x\right)}{x\left(\mathrm{e}^{x}+x\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 14 leaves, 8 steps):

$$
3 x\left(\mathrm{e}^{x}+x\right)^{2 / 3}+3 \ln (x)
$$

Result(type 8, 38 leaves):

$$
\int \frac{5 x^{2}+3\left(\mathrm{e}^{x}+x\right)^{1 / 3}+\mathrm{e}^{x}\left(2 x^{2}+3 x\right)}{x\left(\mathrm{e}^{x}+x\right)^{1 / 3}} \mathrm{~d} x
$$

Test results for the 17 problems in "Charlwood Problems.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int \arcsin (x) \ln (x) \mathrm{d} x
$$

Optimal(type 3, 45 leaves, 8 steps):

$$
\operatorname{arctanh}\left(\sqrt{-x^{2}+1}\right)-x \arcsin (x)(1-\ln (x))-2 \sqrt{-x^{2}+1}+\ln (x) \sqrt{-x^{2}+1}
$$

Result(type 3, 91 leaves):
$-\frac{2\left(\tan \left(\frac{\arcsin (x)}{2}\right)^{2} \ln \left(\frac{2 \tan \left(\frac{\arcsin (x)}{2}\right)}{\tan \left(\frac{\arcsin (x)}{2}\right)^{2}+1}\right)-\arcsin (x) \tan \left(\frac{\arcsin (x)}{2}\right) \ln \left(\frac{2 \tan \left(\frac{\arcsin (x)}{2}\right)}{\tan \left(\frac{\arcsin (x)}{2}\right)^{2}+1}\right)+\arcsin (x) \tan \left(\frac{\arcsin (x)}{2}\right)+2\right)}{\tan \left(\frac{\arcsin (x)}{2}\right)^{2}+1}$
$-\ln \left(\tan \left(\frac{\arcsin (x)}{2}\right)^{2}+1\right)$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int-\arcsin (\sqrt{x}-\sqrt{1+x}) d x
$$

Optimal(type 3, 49 leaves, ? steps):

$$
-\left(\frac{3}{8}+x\right) \arcsin (\sqrt{x}-\sqrt{1+x})+\frac{(\sqrt{x}+3 \sqrt{1+x}) \sqrt{-x+\sqrt{x} \sqrt{1+x} \sqrt{2}}}{8}
$$

Result(type 3, 250 leaves):

$$
\begin{aligned}
& 16\left(\tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{2}+1\right)^{2} \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{2}\left(\arcsin (\sqrt{x}-\sqrt{1+x}) \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{8}\right. \\
& -2 \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{7}+2 \arcsin (\sqrt{x}-\sqrt{1+x}) \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{6}-6 \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{5}+18 \arcsin (\sqrt{x} \\
& -\sqrt{1+x}) \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{4}+6 \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{3}+2 \arcsin (\sqrt{x}-\sqrt{1+x}) \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)^{2} \\
& \left.+2 \tan \left(\frac{\arcsin (\sqrt{x}-\sqrt{1+x})}{2}\right)+\arcsin (\sqrt{x}-\sqrt{1+x})\right)
\end{aligned}
$$

Problem 4: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{\arcsin (x)} x^{3}}{\sqrt{-x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 3, 37 leaves, 5 steps):

$$
\frac{\mathrm{e}^{\arcsin (x)}\left(3 x+x^{3}-3 \sqrt{-x^{2}+1}-3 x^{2} \sqrt{-x^{2}+1}\right)}{10}
$$

Result(type 8, 18 leaves):

$$
\int \frac{\mathrm{e}^{\arcsin (x)} x^{3}}{\sqrt{-x^{2}+1}} \mathrm{~d} x
$$

Problem 5: Unable to integrate problem.

$$
\int \frac{\ln \left(x+\sqrt{x^{2}+1}\right)}{\left(-x^{2}+1\right)^{3 / 2}} d x
$$

Optimal(type 3, 28 leaves, 3 steps):

$$
-\frac{\arcsin \left(x^{2}\right)}{2}+\frac{x \ln \left(x+\sqrt{x^{2}+1}\right)}{\sqrt{-x^{2}+1}}
$$

Result(type 8, 22 leaves):

$$
\int \frac{\ln \left(x+\sqrt{x^{2}+1}\right)}{\left(-x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 6: Unable to integrate problem.

$$
\int \frac{\arcsin (x)}{\left(x^{2}+1\right)^{3 / 2}} d x
$$

Optimal(type 3, 18 leaves, 3 steps):

$$
-\frac{\arcsin \left(x^{2}\right)}{2}+\frac{x \arcsin (x)}{\sqrt{x^{2}+1}}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\arcsin (x)}{\left(x^{2}+1\right)^{3 / 2}} d x
$$

Problem 7: Unable to integrate problem.

$$
\int \frac{\ln \left(x+\sqrt{x^{2}-1}\right)}{\left(x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 26 leaves, 3 steps):

$$
-\frac{\operatorname{arccosh}\left(x^{2}\right)}{2}+\frac{x \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x^{2}+1}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\ln \left(x+\sqrt{x^{2}-1}\right)}{\left(x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{\ln (x)}{x^{2} \sqrt{x^{2}-1}} d x
$$

Optimal(type 3, 37 leaves, 4 steps):

$$
-\operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}-1}}\right)+\frac{\sqrt{x^{2}-1}}{x}+\frac{\ln (x) \sqrt{x^{2}-1}}{x}
$$

Result(type 3, 88 leaves):

Problem 10: Unable to integrate problem.

$$
\int \frac{x \arctan (x) \ln \left(x+\sqrt{x^{2}+1}\right)}{\sqrt{x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 4 steps):

$$
-x \arctan (x)+\frac{\ln \left(x^{2}+1\right)}{2}-\frac{\ln \left(x+\sqrt{x^{2}+1}\right)^{2}}{2}+\arctan (x) \ln \left(x+\sqrt{x^{2}+1}\right) \sqrt{x^{2}+1}
$$

Result(type 8, 23 leaves):

$$
\int \frac{x \arctan (x) \ln \left(x+\sqrt{x^{2}+1}\right)}{\sqrt{x^{2}+1}} \mathrm{~d} x
$$

Problem 11: Unable to integrate problem.

$$
\int \frac{\arctan (x)}{x^{2} \sqrt{-x^{2}+1}} d x
$$

Optimal(type 3, 48 leaves, 7 steps):

$$
-\operatorname{arctanh}\left(\sqrt{-x^{2}+1}\right)+\operatorname{arctanh}\left(\frac{\sqrt{-x^{2}+1} \sqrt{2}}{2}\right) \sqrt{2}-\frac{\arctan (x) \sqrt{-x^{2}+1}}{x}
$$

Result(type 8, 17 leaves):

$$
\int \frac{\arctan (x)}{x^{2} \sqrt{-x^{2}+1}} \mathrm{~d} x
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \operatorname{arcsec}(x)}{\sqrt{x^{2}-1}} \mathrm{~d} x
$$

Optimal(type 3, 21 leaves, 2 steps):

$$
-\frac{x \ln (x)}{\sqrt{x^{2}}}+\operatorname{arcsec}(x) \sqrt{x^{2}-1}
$$

Result(type 3, 96 leaves):

$$
-\frac{2 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x \operatorname{arcsec}(x)}{\sqrt{x^{2}-1}}+\frac{\left(\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x+x^{2}-1\right) \operatorname{arcsec}(x)}{\sqrt{x^{2}-1}}+\frac{\sqrt{\frac{x^{2}-1}{x^{2}}} x \ln \left(\left(\frac{1}{x}+\mathrm{I} \sqrt{1-\frac{1}{x^{2}}}\right)^{2}+1\right)}{\sqrt{x^{2}-1}}
$$

Problem 13: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{-x^{2}+1}{\left(x^{2}+1\right) \sqrt{x^{4}+1}} \mathrm{~d} x
$$

Optimal(type 3, 18 leaves, 2 steps):

$$
\frac{\arctan \left(\frac{x \sqrt{2}}{\sqrt{x^{4}+1}}\right) \sqrt{2}}{2}
$$

Result(type 4, 111 leaves):

$$
-\frac{\sqrt{1-\mathrm{I} x^{2}} \sqrt{1+\mathrm{I} x^{2}} \operatorname{EllipticF}\left(x\left(\frac{\sqrt{2}}{2}+\frac{\mathrm{I} \sqrt{2}}{2}\right), \mathrm{I}\right)}{\left(\frac{\sqrt{2}}{2}+\frac{\mathrm{I} \sqrt{2}}{2}\right) \sqrt{x^{4}+1}}-\frac{2(-1)^{3} / 4 \sqrt{1-\mathrm{I} x^{2}} \sqrt{1+\mathrm{I} x^{2}} \operatorname{EllipticPi}\left((-1)^{1} / 4 x, \mathrm{I}, \frac{\sqrt{-\mathrm{I}}}{(-1)^{1 / 4}}\right)}{\sqrt{x^{4}+1}}
$$

Problem 14: Unable to integrate problem.

$$
\int \ln (\sin (x)) \sqrt{1+\sin (x)} \mathrm{d} x
$$

Optimal(type 3, 36 leaves, 6 steps):

$$
-4 \operatorname{arctanh}\left(\frac{\cos (x)}{\sqrt{1+\sin (x)}}\right)+\frac{4 \cos (x)}{\sqrt{1+\sin (x)}}-\frac{2 \cos (x) \ln (\sin (x))}{\sqrt{1+\sin (x)}}
$$

Result(type 8, 12 leaves):

$$
\int \ln (\sin (x)) \sqrt{1+\sin (x)} \mathrm{d} x
$$

Problem 15: Unable to integrate problem.

$$
\int \sqrt{-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}} \mathrm{d} x
$$

Optimal(type 3, 247 leaves, ? steps):

$$
\begin{aligned}
& +\operatorname{arctanh}\left(\frac{\sqrt{2+2 \sqrt{2}} \sqrt{-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}}}{\sqrt{2}-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}}\right) \sqrt{\sqrt{2}-1}-\arctan \left(\frac{(-\sqrt{2}-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}) \sqrt{2+2 \sqrt{2}}}{2 \sqrt{-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}}) \sqrt{1+\sqrt{2}}}\right) \\
& \left.-\operatorname{arctanh}\left(\frac{\sqrt{-2+2 \sqrt{2}} \sqrt{-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}}}{\sqrt{2}-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}}\right) \sqrt{1+\sqrt{2}}\right)
\end{aligned}
$$

Result(type 8, 19 leaves):

$$
\int \sqrt{-\sqrt{-1+\sec (x)}+\sqrt{1+\sec (x)}} \mathrm{d} x
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \arctan \left(x \sqrt{x^{2}+1}\right) \mathrm{d} x
$$

Optimal(type 3, 92 leaves, 12 steps):

$$
-\frac{\arctan \left(-\sqrt{3}+2 \sqrt{x^{2}+1}\right)}{2}+x \arctan \left(x \sqrt{x^{2}+1}\right)-\frac{\arctan \left(\sqrt{3}+2 \sqrt{x^{2}+1}\right)}{2}-\frac{\ln \left(2+x^{2}-\sqrt{3} \sqrt{x^{2}+1}\right) \sqrt{3}}{4}+\frac{\ln \left(2+x^{2}+\sqrt{3} \sqrt{x^{2}+1}\right) \sqrt{3}}{4}
$$

Result(type 3, 507 leaves):

$$
\begin{aligned}
& \left.x \arctan \left(x \sqrt{x^{2}+1}\right)+\frac{\sqrt{2} \sqrt{\frac{2(x-1)^{2}}{(-1-x)^{2}}+2} \sqrt{3} \operatorname{arctanh}\left(\frac{\sqrt{\frac{2(x-1)^{2}}{(-1-x)^{2}}+2} \sqrt{3}}{2}\right.}{\left(\frac { \sqrt { 2 } } { \frac { 2 (1 + x) ^ { 2 } } { (1 - x) ^ { 2 } } + 2 } \sqrt { 3 } \operatorname { a r c t a n h } \left(\frac{\sqrt{\frac{2(1+x)^{2}}{(1-x)^{2}}+2} \sqrt{3}}{2}\right.\right.}\right) \\
& 3 \sqrt{\frac{\frac{(x-1)^{2}}{(-1-x)^{2}}+1}{\left(\frac{x-1}{-1-x}+1\right)^{2}}}\left(\frac{x-1}{-1-x}+1\right) \sqrt{\frac{(1+x)^{2}}{(1-x)^{2}} \frac{1}{\left(\frac{1+x}{1-x}+1\right)^{2}}}\left(\frac{1+x}{1-x}+1\right) \\
& -\sqrt{2} \sqrt{\frac{2(x-1)^{2}}{(-1-x)^{2}}+2}\left(\sqrt{3} \operatorname{arctanh}\left(\frac{\sqrt{\frac{2(x-1)^{2}}{(-1-x)^{2}}+2} \sqrt{3}}{2}\right)-3 \arctan \left(\frac{\sqrt{\frac{2(x-1)^{2}}{(-1-x)^{2}}+2}(x-1)}{\left(\frac{(x-1)^{2}}{(-1-x)^{2}}+1\right)(-1-x)}\right)\right) \\
& 12 \sqrt{\frac{(x-1)^{2}}{\frac{(-1-x)^{2}}{\left(\frac{x-1}{-1-x}+1\right)^{2}}}}\left(\frac{x-1}{-1-x}+1\right)
\end{aligned}
$$

$$
\left.-\frac{\sqrt{2} \sqrt{\frac{2(1+x)^{2}}{(1-x)^{2}}+2}\left(\sqrt{3} \operatorname{arctanh}\left(\frac{\sqrt{\frac{2(1+x)^{2}}{(1-x)^{2}}+2} \sqrt{3}}{2}\right)-3 \arctan \left(\frac{\sqrt{\frac{2(1+x)^{2}}{(1-x)^{2}}+2}(1+x)}{\left(\frac{(1+x)^{2}}{(1-x)^{2}}+1\right)(1-x)}\right)\right)}{12 \sqrt{\frac{(1+x)^{2}}{\frac{(1-x)^{2}}{(1+x}+1}}\left(\frac{1+x}{1-x}+1\right)^{2}}\right)
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int \arcsin \left(\frac{x}{\sqrt{-x^{2}+1}}\right) d x
$$

Optimal(type 3, 25 leaves, 4 steps):

$$
x \arcsin \left(\frac{x}{\sqrt{-x^{2}+1}}\right)+\arctan \left(\sqrt{-2 x^{2}+1}\right)
$$

Result(type 3, 137 leaves):

$$
x \arcsin \left(\frac{x}{\sqrt{-x^{2}+1}}\right)+\frac{\sqrt{\frac{2 x^{2}-1}{x^{2}-1}}\left(\sqrt{-2 x^{2}+1}+\arctan \left(\frac{-1+2 x}{\sqrt{-2 x^{2}+1}}\right)-\arctan \left(\frac{1+2 x}{\sqrt{-2 x^{2}+1}}\right)\right) \sqrt{-x^{2}+1}}{\sqrt{-2 x^{2}+1}(2+\sqrt{2})(-2+\sqrt{2})}+\frac{\sqrt{\frac{2 x^{2}-1}{x^{2}-1} \sqrt{-x^{2}+1}}}{2}
$$

Test results for the 77 problems in "Hearn Problems.txt"
Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{4}-x^{2}+2} d x
$$

Optimal(type 3, 132 leaves, 9 steps):

$$
\begin{aligned}
& -\frac{\arctan \left(\frac{-2 x+\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}}}\right) \sqrt{14+28 \sqrt{2}}}{28}+\frac{\arctan \left(\frac{2 x+\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}}}\right) \sqrt{14+28 \sqrt{2}}}{28} \\
& \quad+\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{1+2 \sqrt{2}}\right)}{4 \sqrt{2+4 \sqrt{2}}} \\
& \quad \text { Result(type 3,385 leaves) : }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{1+2 \sqrt{2}}\right) \sqrt{1+2 \sqrt{2}} \sqrt{2}}{56}+\frac{\ln \left(x^{2}+\sqrt{2}+x \sqrt{1+2 \sqrt{2}}\right) \sqrt{1+2 \sqrt{2}}}{14}+\frac{\arctan \left(\frac{2 x+\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}})}\right)}{28 \sqrt{-1+2 \sqrt{2}}} \\
& -\frac{\arctan \left(\frac{2 x+\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}}}\right)(1+2 \sqrt{2})}{7 \sqrt{-1+2 \sqrt{2}}}+\frac{\arctan \left(\frac{2 x+\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}}}\right) \sqrt{2}}{2 \sqrt{-1+2 \sqrt{2}}}+\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{1+2 \sqrt{2}}\right) \sqrt{1+2 \sqrt{2}} \sqrt{2}}{56} \\
& -\frac{\ln \left(x^{2}+\sqrt{2}-x \sqrt{1+2 \sqrt{2}}\right) \sqrt{1+2 \sqrt{2}}}{14}+\frac{\arctan \left(\frac{2 x-\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}}}\right)(1+2 \sqrt{2}) \sqrt{2}}{28 \sqrt{-1+2 \sqrt{2}}}-\frac{\arctan \left(\frac{2 x-\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}})(1+2 \sqrt{2})}\right.}{7 \sqrt{-1+2 \sqrt{2}}} \\
& +\frac{\arctan \left(\frac{2 x-\sqrt{1+2 \sqrt{2}}}{\sqrt{-1+2 \sqrt{2}}}\right) \sqrt{2}}{2 \sqrt{-1+2 \sqrt{2}}}
\end{aligned}
$$

Problem 17: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{8}+1} \mathrm{~d} x
$$

Optimal(type 3, 239 leaves, 19 steps):

$$
\begin{aligned}
& -\frac{\ln \left(1+x^{2}-x \sqrt{2-\sqrt{2}}\right) \sqrt{2-\sqrt{2}}}{16}+\frac{\ln \left(1+x^{2}+x \sqrt{2-\sqrt{2}}\right) \sqrt{2-\sqrt{2}}}{16}-\frac{\arctan \left(\frac{-2 x+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right)}{\arctan \left(\frac{2 x+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right)} \begin{array}{l}
4 \sqrt{4-2 \sqrt{2}} \\
-\frac{\ln \left(1+x^{2}-x \sqrt{2+\sqrt{2}}\right) \sqrt{2+\sqrt{2}}}{16}+\frac{\ln \left(1+x^{2}+x \sqrt{2+\sqrt{2}}\right) \sqrt{2+\sqrt{2}}}{16}-\frac{\arctan \left(\frac{-2 x+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right)}{\arctan \left(\frac{2 x+\sqrt{2}}{2+\sqrt{2}}\right.}+\frac{\sqrt{2-\sqrt{2}})}{4 \sqrt{4+2 \sqrt{2}}}+\frac{\sin }{4+2 \sqrt{2}}
\end{array}
\end{aligned}
$$

Result(type 7, 21 leaves):

$$
\frac{\left(\sum_{R=\text { RootOf }\left(\not Z^{8}+1\right)} \frac{\ln \left(x-{ }_{-} R\right)}{R^{7}}\right)}{8}
$$

Problem 37: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \sin (b x+a)^{2} \mathrm{~d} x
$$

Optimal (type 3, 63 leaves, 4 steps):

$$
-\frac{x}{4 b^{2}}+\frac{x^{3}}{6}+\frac{\cos (b x+a) \sin (b x+a)}{4 b^{3}}-\frac{x^{2} \cos (b x+a) \sin (b x+a)}{2 b}+\frac{x \sin (b x+a)^{2}}{2 b^{2}}
$$

Result(type 3, 157 leaves):

$$
\begin{aligned}
& \frac{1}{b^{3}}\left((b x+a)^{2}\left(-\frac{\cos (b x+a) \sin (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)-\frac{(b x+a) \cos (b x+a)^{2}}{2}+\frac{\cos (b x+a) \sin (b x+a)}{4}+\frac{b x}{4}+\frac{a}{4}-\frac{(b x+a)^{3}}{3}-2 a((b x\right. \\
& \left.\left.\quad+a)\left(-\frac{\cos (b x+a) \sin (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)-\frac{(b x+a)^{2}}{4}+\frac{\sin (b x+a)^{2}}{4}\right)+a^{2}\left(-\frac{\cos (b x+a) \sin (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)\right)
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \cos (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 3, 63 leaves, 4 steps):

$$
-\frac{x}{4 b^{2}}+\frac{x^{3}}{6}+\frac{x \cos (b x+a)^{2}}{2 b^{2}}-\frac{\cos (b x+a) \sin (b x+a)}{4 b^{3}}+\frac{x^{2} \cos (b x+a) \sin (b x+a)}{2 b}
$$

Result (type 3, 157 leaves):

$$
\begin{aligned}
& \frac{1}{b^{3}}\left((b x+a)^{2}\left(\frac{\cos (b x+a) \sin (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)+\frac{(b x+a) \cos (b x+a)^{2}}{2}-\frac{\cos (b x+a) \sin (b x+a)}{4}-\frac{b x}{4}-\frac{a}{4}-\frac{(b x+a)^{3}}{3}-2 a((b x\right. \\
& \left.\left.\quad+a)\left(\frac{\cos (b x+a) \sin (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)-\frac{(b x+a)^{2}}{4}-\frac{\sin (b x+a)^{2}}{4}\right)+a^{2}\left(\frac{\cos (b x+a) \sin (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)\right)
\end{aligned}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{1 / 3}+\sqrt{x}} \mathrm{~d} x
$$

Optimal(type 3, 24 leaves, 4 steps):

$$
6 x^{1 / 6}-3 x^{1 / 3}-6 \ln \left(1+x^{1 / 6}\right)+2 \sqrt{x}
$$

Result (type 3, 91 leaves):
$2 \ln \left(x^{1 / 6}-1\right)-\ln \left(x^{1 / 3}+x^{1 / 6}+1\right)-2 \ln \left(1+x^{1 / 6}\right)+\ln \left(x^{1 / 3}-x^{1 / 6}+1\right)+2 \sqrt{x}+\ln (\sqrt{x}-1)-\ln (\sqrt{x}+1)+6 x^{1 / 6}-\ln (x-1)-2 \ln \left(x^{1 / 3}\right.$ $-1)+\ln \left(x^{2 / 3}+x^{1 / 3}+1\right)-3 x^{1 / 3}$

Problem 74: Humongous result has more than 20000 leaves.

$$
\int \frac{2 x^{6}+4 x^{5}+7 x^{4}-3 x^{3}-x^{2}-8 x-8}{\left(2 x^{2}-1\right)^{2} \sqrt{x^{4}+4 x^{3}+2 x^{2}+1}} \mathrm{~d} x
$$

Optimal(type 3, 88 leaves, ? steps):

$$
-\operatorname{arctanh}\left(\frac{x(2+x)\left(33 x^{3}+27 x^{2}-x+7\right)}{\left(31 x^{3}+37 x^{2}+2\right) \sqrt{x^{4}+4 x^{3}+2 x^{2}+1}}\right)+\frac{(1+2 x) \sqrt{x^{4}+4 x^{3}+2 x^{2}+1}}{2\left(2 x^{2}-1\right)}
$$

Result (type ?, 1197350 leaves) : Display of huge result suppressed!
Problem 76: Result more than twice size of optimal antiderivative.

$$
\int \frac{\pi^{2}\left(4 m c^{9}-3 m c^{8}-48 m c^{7} x+24 m c^{6} x-144 m c^{5} x^{2}+176 m c^{3} x^{3}-24 m c^{2} x^{3}+12 m c x^{4}+3 x^{4}\right)+12 m c^{3} \pi^{2}\left(-12 m c^{2}+3 m c-8 x\right) x^{2} \ln \left(\frac{x}{m c^{2}}\right)}{384 \mathrm{e}^{\frac{x}{y}} x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 304 leaves, 20 steps):

Result(type 4, 1355 leaves):
$-\frac{\pi^{2} y m c \mathrm{e}^{-\frac{x}{y}} x^{2}}{32}-\frac{\pi^{2} y^{2} m c x \mathrm{e}^{-\frac{x}{y}}}{16}-\frac{3 \pi^{2} y \mathrm{e}^{-\frac{x}{y}} \ln (m c) m c^{5}}{4}+\frac{3 \pi^{2} y \mathrm{e}^{-\frac{x}{y}} \ln (m c) m c^{4}}{16}-\frac{\pi^{2} y^{2} \ln (m c) m c^{3} \mathrm{e}^{-\frac{x}{y}}}{2}+\frac{\pi^{2} y m c^{2} x \mathrm{e}^{-\frac{x}{y}}}{16}-\frac{11 \pi^{2} y m c^{3} x \mathrm{e}^{-\frac{x}{y}}}{24}$

$$
+\frac{\pi^{2} m c^{8} \mathrm{e}^{-\frac{x}{y}}}{128 x}-\frac{\pi^{2} m c^{9} \mathrm{e}^{-\frac{x}{y}}}{96 x}-\frac{\pi^{2} m c^{8} \mathrm{Ei}_{1}\left(\frac{x}{y}\right)}{128 y}+\frac{\pi^{2} m c^{9} \mathrm{Ei}_{1}\left(\frac{x}{y}\right)}{96 y}-\frac{\pi^{2} y^{3} m c \mathrm{e}^{-\frac{x}{y}}}{16}-\frac{\pi^{2} y \mathrm{e}^{-\frac{x}{y}} x^{2}}{128}-\frac{\pi^{2} y^{2} x \mathrm{e}^{-\frac{x}{y}}}{64}+\frac{\pi^{2} y^{2} m c^{2} \mathrm{e}^{-\frac{x}{y}}}{16}+\frac{3 \pi^{2} y \mathrm{e}^{-\frac{x}{y}} m c^{5}}{8}
$$

$$
-\frac{\mathrm{I} \pi^{3} y^{2} m c^{3} \operatorname{csgn}(\mathrm{I} m c) \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{2} \mathrm{e}^{-\frac{x}{y}}}{4}+\frac{\mathrm{I} \pi^{3} y^{2} m c^{3} \operatorname{csgn}(\mathrm{I} m c)^{2} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right) \mathrm{e}^{-\frac{x}{y}}}{8}-\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{4} \operatorname{csgn}(\mathrm{I} m c)^{2} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)}{64}
$$

$$
+\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{4} \operatorname{csgn}(\mathrm{I} m c) \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{2}}{32}-\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{4} \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2}}{64}+\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{5} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2}}{16}
$$

$$
\begin{aligned}
& \frac{(3-4 m c) m c^{8} \pi^{2}}{384 \mathrm{e}^{\frac{x}{y}} x}+\frac{3 m c^{5} \pi^{2} y}{8 \mathrm{e}^{\frac{x}{y}}}+\frac{(3-22 m c) m c^{2} \pi^{2} x y}{48 \mathrm{e}^{\frac{x}{y}}}-\frac{(1+4 m c) \pi^{2} x^{2} y}{x}+\frac{(3-22 m c) m c^{2} \pi^{2} y^{2}}{128 \mathrm{e}^{\frac{x}{y}}+\frac{m c^{3} \pi^{2} y^{2}}{\frac{x}{y}}-\frac{(1+4 m c) \pi^{2} x y^{2}}{48}} \\
& -\frac{(1+4 m c) \pi^{2} y^{3}}{64 \mathrm{e}^{\frac{x}{y}}}+\frac{(1-2 m c) m c^{6} \pi^{2} \operatorname{Ei}\left(-\frac{x}{y}\right)}{16}+\frac{(3-4 m c) m c^{8} \pi^{2} \operatorname{Ei}\left(-\frac{x}{y}\right)}{384 y}+\frac{m c^{3} \pi^{2}\left(-12 m c^{2}+3 m c-8 y\right) y \operatorname{Ei}\left(-\frac{x}{y}\right)}{32} \\
& -\frac{m c^{3} \pi^{2}(3(1-4 m c) m c-8 x) y \ln \left(\frac{x}{m c^{2}}\right)}{32 \mathrm{e}^{\frac{x}{y}}}+\frac{m c^{3} \pi^{2} y^{2} \ln \left(\frac{x}{m c^{2}}\right)}{4 \mathrm{e}^{\frac{x}{y}}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{5} \operatorname{csgn}(\mathrm{I} m c)^{2} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)}{16}-\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{5} \operatorname{csgn}(\mathrm{I} m c) \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{2}}{8}+\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{5} \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2}}{16} \\
& -\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{4} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2}}{64}-\frac{\mathrm{I} \pi^{3} y m c^{3} \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{3} x \mathrm{e}^{-\frac{x}{y}}}{8}+\frac{\mathrm{I} \pi^{3} y^{2} m c^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2} \mathrm{e}^{-\frac{x}{y}}}{8} \\
& +\frac{\mathrm{I} \pi^{3} y^{2} m c^{3} \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2} \mathrm{e}^{-\frac{x}{y}}}{8}+\frac{\mathrm{I} \pi^{3} y m c^{3} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{3} x \mathrm{e}^{-\frac{x}{y}}}{8}-\frac{\pi^{2} y \ln (m c) m c^{3} x \mathrm{e}^{-\frac{x}{y}}}{2}-\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{4} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{3}}{64} \\
& +\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{4} \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{3}}{64}+\frac{\mathrm{I} \pi^{3} y^{2} m c^{3} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{3} \mathrm{e}^{-\frac{x}{y}}}{8}-\frac{\mathrm{I} \pi^{3} y^{2} m c^{3} \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{3} \mathrm{e}^{-\frac{x}{y}}}{8}+\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{5} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{3}}{16} \\
& -\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{5} \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{3}}{16}-\frac{5 m c^{3} \pi^{2} y^{2} \mathrm{e}^{-\frac{x}{y}}}{24}-\frac{\pi^{2} m c^{6} \mathrm{Ei}_{1}\left(\frac{x}{y}\right)}{16}+\frac{\pi^{2} m c^{7} \mathrm{Ei}_{1}\left(\frac{x}{y}\right)}{8}-\frac{\pi^{2} y^{3} \mathrm{e}^{-\frac{x}{y}}}{64} \\
& +\frac{\left(144 \pi^{2} m c^{5} y-36 \pi^{2} m c^{4} y+96 \pi^{2} m c^{3} x y+96 \pi^{2} m c^{3} y^{2}\right) \mathrm{e}^{-\frac{x}{y}} \ln (x)}{384}-\frac{\mathrm{I} \pi^{3} y m c^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right) x \mathrm{e}^{-\frac{x}{y}}}{8}+\frac{\pi^{2} m c^{3} y^{2} \mathrm{Ei}_{1}\left(\frac{x}{y}\right)}{4} \\
& -\frac{3 \pi^{2} m c^{4} y \mathrm{Ei}_{1}\left(\frac{x}{y}\right)}{32}+\frac{3 \pi^{2} m c^{5} y \mathrm{Ei}_{1}\left(\frac{x}{y}\right)}{8}+\frac{\mathrm{I} \pi^{3} y m c^{3} \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2} x \mathrm{e}^{-\frac{x}{y}}}{8}-\frac{\mathrm{I} \pi^{3} y^{2} m c^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right) \mathrm{e}^{-\frac{x}{y}}}{8} \\
& -\frac{\mathrm{I} \pi^{3} y m c^{3} \operatorname{csgn}(\mathrm{I} m c) \operatorname{csgn}\left(\mathrm{I} m c^{2}\right)^{2} x \mathrm{e}^{-\frac{x}{y}}}{4}+\frac{\mathrm{I} \pi^{3} y m c^{3} \operatorname{csgn}(\mathrm{I} m c)^{2} \operatorname{csgn}\left(\mathrm{I} m c^{2}\right) x \mathrm{e}^{-\frac{x}{y}}}{8}-\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{5} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)}{16} \\
& +\frac{3 \mathrm{I} \pi^{3} y \mathrm{e}^{-\frac{x}{y}} m c^{4} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}(\mathrm{I} x) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)}{64}+\frac{\mathrm{I} \pi^{3} y m c^{3} \operatorname{csgn}\left(\frac{\mathrm{I}}{m c^{2}}\right) \operatorname{csgn}\left(\frac{\mathrm{I} x}{m c^{2}}\right)^{2} x \mathrm{e}^{-\frac{x}{y}}}{8}
\end{aligned}
$$

Test results for the 3 problems in "Hebisch Problems.txt"
Problem 2: Unable to integrate problem.

$$
\int \frac{\left(2 x^{4}-x^{3}+3 x^{2}+2 x+2\right) \mathrm{e}^{\frac{x}{x^{2}+2}}}{x^{3}+2 x} \mathrm{~d} x
$$

Optimal(type 4, 27 leaves, ? steps):

$$
\mathrm{e}^{\frac{x}{x^{2}+2}}\left(x^{2}+2\right)+\operatorname{Ei}\left(\frac{x}{x^{2}+2}\right)
$$

Result(type 8, 42 leaves):

$$
\int \frac{\left(2 x^{4}-x^{3}+3 x^{2}+2 x+2\right) \mathrm{e}^{\frac{x}{x^{2}+2}}}{x^{3}+2 x} \mathrm{~d} x
$$

Test results for the 3 problems in "Jeffrey Problems.txt"

Test results for the 31 problems in "Moses Problems.txt"
Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{x^{1 / 3}+\sqrt{x}} \mathrm{~d} x
$$

Optimal(type 3, 24 leaves, 4 steps):

$$
6 x^{1 / 6}-3 x^{1 / 3}-6 \ln \left(1+x^{1 / 6}\right)+2 \sqrt{x}
$$

Result(type 3, 91 leaves):
$2 \ln \left(x^{1 / 6}-1\right)-\ln \left(x^{1 / 3}+x^{1 / 6}+1\right)-2 \ln \left(1+x^{1 / 6}\right)+\ln \left(x^{1 / 3}-x^{1 / 6}+1\right)+2 \sqrt{x}+\ln (\sqrt{x}-1)-\ln (\sqrt{x}+1)+6 x^{1 / 6}-\ln (x-1)-2 \ln \left(x^{1 / 3}\right.$ $-1)+\ln \left(x^{2 / 3}+x^{1 / 3}+1\right)-3 x^{1 / 3}$

Problem 23: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-A^{2}-B^{2}\right) \cos (z)^{2}}{B\left(1-\frac{\left(A^{2}+B^{2}\right) \sin (z)^{2}}{B^{2}}\right)} \mathrm{d} z
$$

Optimal(type 3, 16 leaves, 5 steps):

$$
-B z-A \operatorname{arctanh}\left(\frac{A \tan (z)}{B}\right)
$$

Result(type 3, 126 leaves):

$$
-\frac{A^{3} \ln (A \tan (z)+B)}{2\left(A^{2}+B^{2}\right)}-\frac{A B^{2} \ln (A \tan (z)+B)}{2\left(A^{2}+B^{2}\right)}+\frac{A^{3} \ln (A \tan (z)-B)}{2\left(A^{2}+B^{2}\right)}+\frac{A B^{2} \ln (A \tan (z)-B)}{2\left(A^{2}+B^{2}\right)}-\frac{B \arctan (\tan (z)) A^{2}}{A^{2}+B^{2}}-\frac{\arctan (\tan (z)) B^{3}}{A^{2}+B^{2}}
$$

Test results for the 101 problems in "Stewart Problems.txt"
Problem 27: Result more than twice size of optimal antiderivative.

$$
\int \sec (x) \tan (x)^{5} \mathrm{~d} x
$$

Optimal(type 3, 15 leaves, 3 steps):

$$
\sec (x)-\frac{2 \sec (x)^{3}}{3}+\frac{\sec (x)^{5}}{5}
$$

Result(type 3, 47 leaves):

$$
\frac{\sin (x)^{6}}{5 \cos (x)^{5}}-\frac{\sin (x)^{6}}{15 \cos (x)^{3}}+\frac{\sin (x)^{6}}{5 \cos (x)}+\frac{\left(\frac{8}{3}+\sin (x)^{4}+\frac{4 \sin (x)^{2}}{3}\right) \cos (x)}{5}
$$

Problem 32: Result more than twice size of optimal antiderivative.

$$
\int \sec (x)^{3} \tan (x)^{3} \mathrm{~d} x
$$

Optimal(type 3, 13 leaves, 3 steps):

$$
-\frac{\sec (x)^{3}}{3}+\frac{\sec (x)^{5}}{5}
$$

Result(type 3, 41 leaves):

$$
\frac{\sin (x)^{4}}{5 \cos (x)^{5}}+\frac{\sin (x)^{4}}{15 \cos (x)^{3}}-\frac{\sin (x)^{4}}{15 \cos (x)}-\frac{\left(2+\sin (x)^{2}\right) \cos (x)}{15}
$$

Problem 98: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{4}}{\sqrt{x^{10}-2}} \mathrm{~d} x
$$

Optimal(type 3, 14 leaves, 3 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{x^{5}}{\sqrt{x^{10}-2}}\right)}{5}
$$

Result(type 3, 33 leaves):

$$
\frac{\sqrt{-\operatorname{signum}\left(-1+\frac{x^{10}}{2}\right)} \arcsin \left(\frac{x^{5} \sqrt{2}}{2}\right)}{5 \sqrt{\operatorname{signum}\left(-1+\frac{x^{10}}{2}\right)}}
$$

Test results for the 193 problems in "Timofeev Problems.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{-b^{2} x^{2}+a^{2}} \mathrm{~d} x
$$

Optimal(type 3, 14 leaves, 1 step):

$$
\frac{\operatorname{arctanh}\left(\frac{b x}{a}\right)}{a b}
$$

Result(type 3, 31 leaves):

$$
-\frac{\ln (b x-a)}{2 a b}+\frac{\ln (b x+a)}{2 a b}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cos (x)^{3}}{\sin (x)^{4}} d x
$$

Optimal(type 3, 11 leaves, 2 steps):

$$
-\frac{1}{3 \sin (x)^{3}}+\frac{1}{\sin (x)}
$$

Result(type 3, 31 leaves):

$$
-\frac{\cos (x)^{4}}{3 \sin (x)^{3}}+\frac{\cos (x)^{4}}{3 \sin (x)}+\frac{\left(2+\cos (x)^{2}\right) \sin (x)}{3}
$$

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \ln (\cos (x)) \sec (x)^{2} \mathrm{~d} x
$$

Optimal(type 3, 12 leaves, 3 steps):

$$
-x+\tan (x)+\ln (\cos (x)) \tan (x)
$$

Result(type 3, 60 leaves):

$$
-\frac{2 \mathrm{Ie}^{2 \mathrm{I} x} \ln (2 \cos (x))}{1+\mathrm{e}^{2 \mathrm{I} x}}+\frac{2 \mathrm{I}}{1+\mathrm{e}^{2 \mathrm{I} x}}+\mathrm{I} \ln \left(1+\mathrm{e}^{2 \mathrm{I} x}\right)-\frac{2 \mathrm{I} \ln (2)}{1+\mathrm{e}^{2 \mathrm{I} x}}
$$

Problem 38: Unable to integrate problem.

$$
\int \frac{1}{x^{m}\left(a^{3}+x^{3}\right)} \mathrm{d} x
$$

Optimal(type 5, 40 leaves, 1 step):

$$
\frac{x^{1-m} \text { hypergeom }\left(\left[1, \frac{1}{3}-\frac{m}{3}\right],\left[\frac{4}{3}-\frac{m}{3}\right],-\frac{x^{3}}{a^{3}}\right)}{a^{3}(1-m)}
$$

Result(type 8, 17 leaves):

$$
\int \frac{1}{x^{m}\left(a^{3}+x^{3}\right)} \mathrm{d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{1}{x^{m}\left(a^{4}-x^{4}\right)} \mathrm{d} x
$$

Optimal(type 5, 39 leaves, 1 step):

$$
\frac{x^{1-m} \text { hypergeom }\left(\left[1, \frac{1}{4}-\frac{m}{4}\right],\left[\frac{5}{4}-\frac{m}{4}\right], \frac{x^{4}}{a^{4}}\right)}{a^{4}(1-m)}
$$

Result(type 8, 19 leaves):

$$
\int \frac{1}{x^{m}\left(a^{4}-x^{4}\right)} \mathrm{d} x
$$

Problem 41: Result is not expressed in closed-form.

$$
\int \frac{1}{x^{2}\left(a^{5}+x^{5}\right)} \mathrm{d} x
$$

Optimal(type 3, 157 leaves, 7 steps):
$\begin{aligned}-\frac{1}{a^{5} x} & +\frac{\ln (a+x)}{5 a^{6}}-\frac{\ln \left(a^{2}+x^{2}-\frac{a x(-\sqrt{5}+1)}{2}\right)(-\sqrt{5}+1)}{20 a^{6}}-\frac{\ln \left(a^{2}+x^{2}-\frac{a x(\sqrt{5}+1)}{2}\right)(\sqrt{5}+1)}{20 a^{6}} \\ & +\frac{\arctan \left(\frac{(-4 x+a(\sqrt{5}+1)) \sqrt{50+10 \sqrt{5}}}{20 a}\right) \sqrt{10-2 \sqrt{5}}}{10 a^{6}}+\frac{\arctan \left(\frac{-4 x+a(-\sqrt{5}+1)}{a \sqrt{10+2 \sqrt{5}}) \sqrt{10+2 \sqrt{5}}}\right.}{10 a^{6}}\end{aligned}$
Result(type 7, 108 leaves):

$$
\left.\frac{\sum_{Z^{3}}=\operatorname{RootOf}\left(Z^{4}-a Z^{3}+a^{2} Z^{2}-a^{3} Z+a^{4}\right)}{5 a^{6}}+\frac{\left(-R^{3}-3 _R^{2} a+2 _R a^{2}-a^{3}\right) \ln \left(x-R_{-} R\right)}{4 R^{3}-3 _R^{2} a+2 _R a^{2}-a^{3}}\right) \frac{\ln (a+x)}{5 a^{6}}-\frac{1}{a^{5} x}
$$

Problem 51: Result more than twice size of optimal antiderivative.

$$
\int \frac{c 1 x+b 1}{\left(c x^{2}+2 b x+a\right)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 162 leaves, 5 steps):
$\frac{-b b 1+a c l-(-b c l+b 1 c) x}{6\left(-a c+b^{2}\right)\left(c x^{2}+2 b x+a\right)^{3}}+\frac{5(-b c l+b 1 c)(c x+b)}{24\left(-a c+b^{2}\right)^{2}\left(c x^{2}+2 b x+a\right)^{2}}-\frac{5 c(-b c l+b 1 c)(c x+b)}{16\left(-a c+b^{2}\right)^{3}\left(c x^{2}+2 b x+a\right)}+\frac{5 c^{2}(-b c l+b 1 c) \operatorname{arctanh}\left(\frac{c x+b}{\sqrt{-a c+b^{2}}}\right)}{16\left(-a c+b^{2}\right)^{7 / 2}}$ Result(type 3, 404 leaves):
$\frac{(-2 b c l+2 b 1 c) x+2 b b 1-2 a c l}{3\left(4 a c-4 b^{2}\right)\left(\left(x^{2}+2 b x+a\right)^{3}\right.}$
$-\frac{10 c x b c l}{3\left(4 a c-4 b^{2}\right)^{2}\left(c x^{2}+2 b\right.}$
$10 c^{2} x b 1$
$10 b^{2} c l$
$3\left(4 a c-4 b^{2}\right)\left(c x^{2}+2 b x+a\right)^{3}-\overline{3\left(4 a c-4 b^{2}\right)^{2}\left(c x^{2}+2 b x+a\right)^{2}}+\overline{3\left(4 a c-4 b^{2}\right)^{2}\left(c x^{2}+2 b x+a\right)^{2}}-\overline{3\left(4 a c-4 b^{2}\right)^{2}\left(c x^{2}+2 b x+a\right)^{2}}$
$+\frac{10 b b l c}{3\left(4 a c-4 b^{2}\right)^{2}\left(c x^{2}+2 b x+a\right)^{2}}-\frac{20 c^{2} x b c l}{\left(4 a c-4 b^{2}\right)^{3}\left(c x^{2}+2 b x+a\right)}+\frac{20 c^{3} x b 1}{\left(4 a c-4 b^{2}\right)^{3}\left(c x^{2}+2 b x+a\right)}-\frac{20 c b^{2} c l}{\left(4 a c-4 b^{2}\right)^{3}\left(c x^{2}+2 b x+a\right)}$

$$
+\frac{20 c^{2} b b 1}{\left(4 a c-4 b^{2}\right)^{3}\left(c x^{2}+2 b x+a\right)}-\frac{20 c^{2} \arctan \left(\frac{2 c x+2 b}{2 \sqrt{a c-b^{2}}}\right) b c l}{\left(4 a c-4 b^{2}\right)^{3} \sqrt{a c-b^{2}}}+\frac{20 c^{3} \arctan \left(\frac{2 c x+2 b}{2 \sqrt{a c-b^{2}}}\right) b 1}{\left(4 a c-4 b^{2}\right)^{3} \sqrt{a c-b^{2}}}
$$

Problem 56: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{(x-1)^{2 / 3} x^{5}} \mathrm{~d} x
$$

Optimal(type 3, 75 leaves, 8 steps):
$\frac{(x-1)^{1 / 3}}{4 x^{4}}+\frac{11(x-1)^{1 / 3}}{36 x^{3}}+\frac{11(x-1)^{1 / 3}}{27 x^{2}}+\frac{55(x-1)^{1 / 3}}{81 x}+\frac{55 \ln \left(1+(x-1)^{1 / 3}\right)}{81}-\frac{55 \ln (x)}{243}-\frac{110 \arctan \left(\frac{\left(1-2(x-1)^{1 / 3}\right) \sqrt{3}}{3}\right) \sqrt{3}}{243}$
Result(type 3, 157 leaves):

$$
\begin{aligned}
& -\frac{1}{324\left(1+(x-1)^{1 / 3}\right)^{4}}-\frac{5}{243\left(1+(x-1)^{1 / 3}\right)^{3}}-\frac{20}{243\left(1+(x-1)^{1 / 3}\right)^{2}}-\frac{25}{81\left(1+(x-1)^{1 / 3}\right)}+\frac{110 \ln \left(1+(x-1)^{1 / 3}\right)}{243} \\
& -\frac{-75(x-1)^{7 / 3}+190(x-1)^{2}-350(x-1)^{5 / 3}+\frac{1157(x-1)^{4 / 3}}{4}-138 x+\frac{149}{4}-116(x-1)^{2 / 3}+137(x-1)^{1 / 3}}{243\left((x-1)^{2 / 3}-(x-1)^{1 / 3}+1\right)^{4}} \\
& -\frac{55 \ln \left((x-1)^{2 / 3}-(x-1)^{1 / 3}+1\right)}{243}+\frac{110 \sqrt{3} \arctan \left(\frac{\left(-1+2(x-1)^{1 / 3}\right) \sqrt{3}}{3}\right)}{243}
\end{aligned}
$$

Problem 58: Unable to integrate problem.

$$
\int \frac{x^{2}\left(-x^{2}+1\right)^{1 / 4} \sqrt{1+x}}{\sqrt{1-x}(\sqrt{1-x}-\sqrt{1+x})} \mathrm{d} x
$$

Optimal(type 3, 219 leaves, 33 steps):

$$
\frac{5(1-x)^{3 / 4}(1+x)^{1 / 4}}{16}-\frac{(1-x)^{1 / 4}(1+x)^{3 / 4}}{16}+\frac{(1-x)^{5 / 4}(1+x)^{3 / 4}}{24}+\frac{3 \arctan \left(-1+\frac{(1-x)^{1 / 4} \sqrt{2}}{(1+x)^{1 / 4}}\right) \sqrt{2}}{16}
$$

$$
\begin{aligned}
& +\frac{3 \arctan \left(1+\frac{(1-x)^{1 / 4} \sqrt{2}}{(1+x)^{1 / 4}}\right) \sqrt{2}}{16}+\frac{\ln \left(1-\frac{(1-x)^{1 / 4} \sqrt{2}}{(1+x)^{1 / 4}}+\frac{\sqrt{1-x}}{\sqrt{1+x}}\right) \sqrt{2}}{16}-\frac{\ln \left(1+\frac{(1-x)^{1 / 4} \sqrt{2}}{(1+x)^{1 / 4}}+\frac{\sqrt{1-x}}{\sqrt{1+x}}\right) \sqrt{2}}{16} \\
& +\frac{7\left(-x^{2}+1\right)^{5 / 4}}{24 \sqrt{1-x}}+\frac{x\left(-x^{2}+1\right)^{5 / 4}}{6 \sqrt{1-x}}+\frac{\left(-x^{2}+1\right)^{5 / 4} \sqrt{1+x}}{6}
\end{aligned}
$$

Result(type 8, 44 leaves):

$$
\int \frac{x^{2}\left(-x^{2}+1\right)^{1 / 4} \sqrt{1+x}}{\sqrt{1-x}(\sqrt{1-x}-\sqrt{1+x})} \mathrm{d} x
$$

Problem 60: Unable to integrate problem.

$$
\int \frac{\left((x-1)^{2}(1+x)\right)^{1 / 3}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 3, 127 leaves, ? steps):

$$
\begin{aligned}
& -\frac{\left((x-1)^{2}(1+x)\right)^{1 / 3}}{x}+\frac{\ln (x)}{6}-\frac{2 \ln (1+x)}{3}-\frac{3 \ln \left(1+\frac{1-x}{\left((x-1)^{2}(1+x)\right)^{1 / 3}}\right)}{2}-\frac{\ln \left(1+\frac{x-1}{\left((x-1)^{2}(1+x)\right)^{1 / 3}}\right)}{2} \\
& \quad-\frac{\arctan \left(\frac{\left(1-\frac{2(x-1)}{\left((x-1)^{2}(1+x)\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}-\arctan \left(\frac{\left(1+\frac{2(x-1)}{\left.\left((x-1)^{2}(1+x)\right)^{1 / 3}\right) \sqrt{3}}\right.}{3}\right) \sqrt{3}
\end{aligned}
$$

Result(type 8, 73 leaves):

$$
-\frac{\left((x-1)^{2}(1+x)\right)^{1 / 3}}{x}+\frac{\left(\int \frac{3 x+1}{3 x\left((x-1)(1+x)^{2}\right)^{1 / 3}} \mathrm{~d} x\right)\left((x-1)^{2}(1+x)\right)^{1 / 3}\left((x-1)(1+x)^{2}\right)^{1 / 3}}{(x-1)(1+x)}
$$

Problem 66: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(x^{4}-1\right) \sqrt{x^{2}+2}} \mathrm{~d} x
$$

Optimal(type 3, 31 leaves, 5 steps):

$$
-\frac{\arctan \left(\frac{x}{\sqrt{x^{2}+2}}\right)}{2}-\frac{\operatorname{arctanh}\left(\frac{x \sqrt{3}}{\sqrt{x^{2}+2}}\right) \sqrt{3}}{6}
$$

Result(type 3, 69 leaves):

$$
-\frac{\sqrt{3} \operatorname{arctanh}\left(\frac{(2 x+4) \sqrt{3}}{6 \sqrt{(x-1)^{2}+2 x+1}}\right)}{12}+\frac{\sqrt{3} \operatorname{arctanh}\left(\frac{(4-2 x) \sqrt{3}}{6 \sqrt{(1+x)^{2}-2 x+1}}\right)}{12}-\frac{\arctan \left(\frac{x}{\sqrt{x^{2}+2}}\right)}{2}
$$

Problem 68: Result more than twice size of optimal antiderivative.

$$
\int \frac{1+2 x}{\left(3 x^{2}+4 x+4\right) \sqrt{x^{2}+6 x-1}} \mathrm{~d} x
$$

Optimal(type 3, 53 leaves, 5 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{(1+x) \sqrt{7}}{\sqrt{x^{2}+6 x-1}}\right) \sqrt{7}}{21}-\frac{5 \arctan \left(\frac{(2-x) \sqrt{7} \sqrt{2}}{4 \sqrt{x^{2}+6 x-1}}\right) \sqrt{14}}{84}
$$

Result(type 3, 157 leaves):

$$
-\frac{\sqrt{-\frac{6(-2+x)^{2}}{(-1-x)^{2}}+15}\left(4 \sqrt { 7 } \operatorname { a r c t a n h } \left(\frac{\left.\sqrt{-\frac{6(-2+x)^{2}}{(-1-x)^{2}}+15} \sqrt{7}\right)-5 \sqrt{14} \arctan \left(\frac{\sqrt{14} \sqrt{-\frac{6(-2+x)^{2}}{(-1-x)^{2}}+15}(-2+x)}{4\left(\frac{2(-2+x)^{2}}{(-1-x)^{2}}-5\right)(-1-x)}\right)}{84 \sqrt{-\frac{3\left(\frac{2(-2+x)^{2}}{(-1-x)^{2}}-5\right)}{\left(\frac{-2+x}{-1-x}+1\right)^{2}}}\left(\frac{-2+x}{-1-x}+1\right)}\right.\right.}{\sqrt{(-x \sqrt{(-1-x})}}
$$

Problem 80: Result more than twice size of optimal antiderivative.

$$
\int x^{6}\left(x^{7}+1\right)^{1 / 3} \mathrm{~d} x
$$

Optimal(type 2, 9 leaves, 1 step):

$$
\frac{3\left(x^{7}+1\right)^{4 / 3}}{28}
$$

Result(type 2, 36 leaves):

$$
\frac{3(1+x)\left(x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)\left(x^{7}+1\right)^{1 / 3}}{28}
$$

Problem 81: Result unnecessarily involves higher level functions.

$$
\int \frac{\left(x^{7}+1\right)^{2 / 3}}{x^{8}} \mathrm{~d} x
$$

Optimal(type 3, 53 leaves, 6 steps):

$$
-\frac{\left(x^{7}+1\right)^{2 / 3}}{7 x^{7}}-\frac{\ln (x)}{3}+\frac{\ln \left(1-\left(x^{7}+1\right)^{1 / 3}\right)}{7}+\frac{2 \arctan \left(\frac{\left(1+2\left(x^{7}+1\right)^{1 / 3}\right) \sqrt{3}}{3}\right) \sqrt{3}}{21}
$$

Result(type 5, 75 leaves):

$$
-\frac{\left(x^{7}+1\right)^{2 / 3}}{7 x^{7}}+\frac{\sqrt{3} \Gamma\left(\frac{2}{3}\right)\left(\frac{2\left(-\frac{\pi \sqrt{3}}{6}-\frac{3 \ln (3)}{2}+7 \ln (x)\right) \pi \sqrt{3}}{3 \Gamma\left(\frac{2}{3}\right)}-\frac{2 \pi \sqrt{3} x^{7} \text { hypergeom }\left(\left[1,1, \frac{4}{3}\right],[2,2],-x^{7}\right)}{9 \Gamma\left(\frac{2}{3}\right)}\right)}{21 \pi}
$$

Problem 82: Unable to integrate problem.

$$
\int x^{9} \sqrt{x^{10}+x^{5}+1} d x
$$

Optimal(type 3, 47 leaves, 5 steps):

$$
\frac{\left(x^{10}+x^{5}+1\right)^{3 / 2}}{15}-\frac{3 \operatorname{arcsinh}\left(\frac{\left(2 x^{5}+1\right) \sqrt{3}}{3}\right)}{80}-\frac{\left(2 x^{5}+1\right) \sqrt{x^{10}+x^{5}+1}}{40}
$$

Result(type 8, 42 leaves):

$$
\frac{\left(8 x^{10}+2 x^{5}+5\right) \sqrt{x^{10}+x^{5}+1}}{120}+\int-\frac{3 x^{4}}{16 \sqrt{x^{10}+x^{5}+1}} \mathrm{~d} x
$$

Problem 84: Result unnecessarily involves higher level functions.

$$
\int \frac{x^{3}-1}{\left(x^{3}+2\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 2 steps):

$$
\frac{x\left(x^{3}+2\right)^{2 / 3}}{3}+\frac{5 \ln \left(-x+\left(x^{3}+2\right)^{1 / 3}\right)}{6}-\frac{5 \arctan \left(\frac{\left(1+\frac{2 x}{\left(x^{3}+2\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{9}
$$

Result(type 5, 28 leaves):

$$
\frac{x\left(x^{3}+2\right)^{2 / 3}}{3}-\frac{52^{2 / 3} x \text { hypergeom }\left(\left[\frac{1}{3}, \frac{1}{3}\right],\left[\frac{4}{3}\right],-\frac{x^{3}}{2}\right)}{6}
$$

Problem 85: Humongous result has more than 20000 leaves.

$$
\int \frac{-x^{2}+1}{\left(2 a x+x^{2}+1\right) \sqrt{2 a x^{3}+x^{4}+2 b x^{2}+2 a x+1}} \mathrm{~d} x
$$

Optimal(type 3, 66 leaves, 1 step):

$$
\frac{\arctan \left(\frac{\left(a+2\left(a^{2}-b+1\right) x+a x^{2}\right) \sqrt{2}}{2 \sqrt{1-b} \sqrt{2 a x^{3}+x^{4}+2 b x^{2}+2 a x+1}}\right) \sqrt{2}}{2 \sqrt{1-b}}
$$

Result(type ?, 247418 leaves): Display of huge result suppressed!
Problem 89: Result more than twice size of optimal antiderivative.

$$
\int \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)^{4} \mathrm{~d} x
$$

Optimal(type 3, 14 leaves, 3 steps):

$$
\frac{3 x}{8}+\frac{\cos (x)}{2}-\frac{\cos (x) \sin (x)}{8}
$$

Result(type 3, 38 leaves):

$$
\frac{\left(\cos \left(\frac{\pi}{4}+\frac{x}{2}\right)^{3}+\frac{3 \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)}{2}\right) \sin \left(\frac{\pi}{4}+\frac{x}{2}\right)}{2}+\frac{3 \pi}{16}+\frac{3 x}{8}
$$

Problem 98: Result more than twice size of optimal antiderivative.

$$
\int\left(1+\cot (x)^{3}\right)\left(a \sec (x)^{2}-\sin (2 x)\right)^{2} \mathrm{~d} x
$$

Optimal(type 3, 80 leaves, 8 steps):
$\frac{x}{2}+4 a x+2 \cos (x)^{2}+\cos (x)^{4}+4 a \cot (x)-\frac{a^{2} \cot (x)^{2}}{2}+(4-a) a \ln (\cos (x))+\left(a^{2}+4\right) \ln (\sin (x))+\frac{\cos (x) \sin (x)}{2}-\cos (x)^{3} \sin (x)+a^{2} \tan (x)$

$$
+\frac{a^{2} \tan (x)^{3}}{3}
$$

Result(type 3, 185 leaves):
$8\left(\cos (x)^{3}+\frac{3 \cos (x)}{2}\right) \sin (x)-4\left(\cos (x)^{5}+\frac{5 \cos (x)^{3}}{4}+\frac{15 \cos (x)}{8}\right) \sin (x)+2 \cos (x)^{2}-4 \cot (x)+\cos (x)^{4}+\frac{x}{2}+2 \cos (x)^{6}+4 \ln (\sin (x))+4 a x$

$$
\begin{aligned}
& +2 a \cot (x)^{2}+4 a \ln (\sin (x))-\frac{2 a^{2} \cot (x)}{3}-\frac{a^{2}}{2 \sin (x)^{2}}+a^{2} \ln (\tan (x))-4 a \ln (\tan (x))-\frac{2 a}{\sin (x)^{2}}+4 a \cot (x)+\frac{2 \cos (x)^{8}}{\sin (x)^{2}}+\frac{8 \cos (x)^{5}}{\sin (x)} \\
& -\frac{2 \cos (x)^{6}}{\sin (x)^{2}}-\frac{4 \cos (x)^{7}}{\sin (x)}+\frac{a^{2}}{3 \cos (x) \sin (x)}+\frac{a^{2}}{3 \sin (x) \cos (x)^{3}}
\end{aligned}
$$

Problem 104: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cos (x)^{2}}{\cos (3 x)} d x
$$

Optimal(type 3, 7 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}(2 \sin (x))}{2}
$$

Result(type 3, 19 leaves):

$$
\frac{\ln (2 \sin (x)+1)}{4}-\frac{\ln (2 \sin (x)-1)}{4}
$$

Problem 107: Result unnecessarily involves higher level functions.

$$
\int \frac{1}{\sqrt{1+\cos (2 x)}} d x
$$

Optimal(type 3, 23 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sin (2 x) \sqrt{2}}{2 \sqrt{1+\cos (2 x)}}\right) \sqrt{2}}{2}
$$

Result(type 5, 8 leaves):
$\sqrt{2} \operatorname{InverseJacobiAM}(x, 1)$

Problem 108: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{\cos (x)}{\sqrt{\sin (2 x)}} d x
$$

Optimal(type 3, 25 leaves, 1 step):

$$
-\frac{\arcsin (\cos (x)-\sin (x))}{2}+\frac{\ln (\cos (x)+\sin (x)+\sqrt{\sin (2 x)})}{2}
$$

Result(type 4, 97 leaves):

$$
\frac{\sqrt{-\frac{\tan \left(\frac{x}{2}\right)}{\tan \left(\frac{x}{2}\right)^{2}-1}}\left(\tan \left(\frac{x}{2}\right)^{2}-1\right) \sqrt{1+\tan \left(\frac{x}{2}\right)} \sqrt{-2 \tan \left(\frac{x}{2}\right)+2} \sqrt{-\tan \left(\frac{x}{2}\right)} \operatorname{EllipticF}\left(\sqrt{1+\tan \left(\frac{x}{2}\right)}, \frac{\sqrt{2}}{2}\right)}{\sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)}}
$$

Problem 109: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{\cos (x)^{7}}{\sin (2 x)^{7 / 2}} \mathrm{~d} x
$$

Optimal (type 3, 47 leaves, 4 steps):

$$
-\frac{\arcsin (\cos (x)-\sin (x))}{16}-\frac{\ln (\cos (x)+\sin (x)+\sqrt{\sin (2 x)})}{16}-\frac{\cos (x)^{5}}{5 \sin (2 x)^{5 / 2}}+\frac{\cos (x)}{4 \sqrt{\sin (2 x)}}
$$

Result (type 4, 1107 leaves):

$$
\sqrt{-\frac{\tan \left(\frac{x}{2}\right)}{\tan \left(\frac{x}{2}\right)^{2}-1}}\left(1 9 2 \sqrt { 1 + \operatorname { t a n } (\frac { x } { 2 }) } \sqrt { - 2 \operatorname { t a n } (\frac { x } { 2 }) + 2 } \sqrt { - \operatorname { t a n } (\frac { x } { 2 }) } \text { EllipticE } \left(\sqrt{1+\tan \left(\frac{x}{2}\right)}\right.\right.
$$

$$
\left.\frac{\sqrt{2}}{2}\right) \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{6}
$$

$$
-96 \sqrt{1+\tan \left(\frac{x}{2}\right)} \sqrt{-2 \tan \left(\frac{x}{2}\right)+2} \sqrt{-\tan \left(\frac{x}{2}\right)} \text { EllipticF } \sqrt{1+\tan \left(\frac{x}{2}\right)}
$$

$$
\left.\frac{\sqrt{2}}{2}\right) \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{6}
$$

$$
-\sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{10}
$$

$$
-384 \sqrt{1+\tan \left(\frac{x}{2}\right)} \sqrt{-2 \tan \left(\frac{x}{2}\right)+2} \sqrt{-\tan \left(\frac{x}{2}\right)} \text { EllipticE }\left(\sqrt{1+\tan \left(\frac{x}{2}\right)}\right.
$$

$$
\left.\frac{\sqrt{2}}{2}\right) \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{4}
$$

$$
+192 \sqrt{1+\tan \left(\frac{x}{2}\right)} \sqrt{-2 \tan \left(\frac{x}{2}\right)+2} \sqrt{-\tan \left(\frac{x}{2}\right)} \text { EllipticF }\left(\sqrt{1+\tan \left(\frac{x}{2}\right)}\right.
$$

$$
\begin{aligned}
& \left.\frac{\sqrt{2}}{2}\right) \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{4} \\
& +48 \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)} \tan \left(\frac{x}{2}\right)^{8} \\
& +3 \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{8} \\
& +96 \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{8} \\
& +192 \sqrt{1+\tan \left(\frac{x}{2}\right)} \sqrt{-2 \tan \left(\frac{x}{2}\right)+2} \sqrt{-\tan \left(\frac{x}{2}\right)} \text { EllipticE }\left(\sqrt{1+\tan \left(\frac{x}{2}\right)},\right. \\
& \left.\frac{\sqrt{2}}{2}\right) \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{2} \\
& -96 \sqrt{1+\tan \left(\frac{x}{2}\right)} \sqrt{-2 \tan \left(\frac{x}{2}\right)+2} \sqrt{-\tan \left(\frac{x}{2}\right)} \text { EllipticF }\left(\sqrt{1+\tan \left(\frac{x}{2}\right)}\right. \text {, } \\
& \left.\frac{\sqrt{2}}{2}\right) \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{2} \\
& -144 \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)} \tan \left(\frac{x}{2}\right)^{6} \\
& +14 \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{6} \\
& -192 \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{6} \\
& +144 \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)} \tan \left(\frac{x}{2}\right)^{4} \\
& +14 \tan \left(\frac{x}{2}\right)^{4} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \\
& +96 \tan \left(\frac{x}{2}\right)^{4} \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \\
& -48 \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)} \tan \left(\frac{x}{2}\right)^{2} \\
& +3 \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \tan \left(\frac{x}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)^{2}-1\right)} \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)}\right)\right) /\left(1 6 0 \operatorname { t a n } (\frac { x } { 2 }) ^ { 3 } \left(\tan \left(\frac{x}{2}\right)^{2}\right.\right. \\
& \left.-1) \sqrt{\tan \left(\frac{x}{2}\right)^{3}-\tan \left(\frac{x}{2}\right)}\left(\tan \left(\frac{x}{2}\right)-1\right) \sqrt{\tan \left(\frac{x}{2}\right)\left(\tan \left(\frac{x}{2}\right)-1\right)\left(1+\tan \left(\frac{x}{2}\right)\right)}\left(1+\tan \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Problem 110: Unable to integrate problem.

$$
\int \frac{1}{\left(\cos (x)^{11} \sin (x)^{13}\right)^{1 / 4}} d x
$$

Optimal(type 3, 60 leaves, 4 steps):

$$
-\frac{4 \cos (x)^{5} \sin (x)}{9\left(\cos (x)^{11} \sin (x)^{13}\right)^{1 / 4}}-\frac{8 \cos (x)^{3} \sin (x)^{3}}{\left(\cos (x)^{11} \sin (x)^{13}\right)^{1 / 4}}+\frac{4 \cos (x) \sin (x)^{5}}{7\left(\cos (x)^{11} \sin (x)^{13}\right)^{1 / 4}}
$$

Result(type 8, 13 leaves):

$$
\int \frac{1}{\left(\cos (x)^{11} \sin (x)^{13}\right)^{1 / 4}} d x
$$

Problem 111: Humongous result has more than 20000 leaves.

$$
\int \frac{-2 \sin (2 x)+\sqrt{\cos (x) \sin (x)^{3}}}{-\sqrt{\cos (x)^{3} \sin (x)}+\sqrt{\tan (x)}} \mathrm{d} x
$$

Optimal(type 3, 298 leaves, 66 steps):

$$
\begin{aligned}
& 2^{1 / 4} \operatorname{arccoth}\left(\frac{\cos (x)(\sin (x)+\cos (x) \sqrt{2}) 2^{1 / 4}}{2 \sqrt{\cos (x)^{3} \sin (x)}}\right)-2^{1 / 4} \operatorname{arccoth}\left(\frac{(\sqrt{2}+\tan (x)) 2^{1 / 4}}{2 \sqrt{\tan (x)}}\right)+2^{1 / 4} \arctan \left(\frac{\cos (x)(-\sin (x)+\cos (x) \sqrt{2}) 2^{1 / 4}}{2 \sqrt{\cos (x)^{3} \sin (x)}}\right) \\
& \quad-2^{1 / 4} \arctan \left(\frac{(\sqrt{2}-\tan (x)) 2^{1 / 4}}{2 \sqrt{\tan (x)}}\right)-2 \operatorname{arccoth}\left(\frac{\cos (x)(\cos (x)+\sin (x)) \sqrt{2}}{2 \sqrt{\cos (x)^{3} \sin (x)}}\right) \sqrt{2}-2 \arctan \left(\frac{\cos (x)(\cos (x)-\sin (x)) \sqrt{2}}{2 \sqrt{\cos (x)^{3} \sin (x)}}\right) \sqrt{2} \\
& \quad+4 \csc (x) \sec (x) \sqrt{\cos (x)^{3} \sin (x)}+\frac{\csc (x)^{2} \ln \left(1+\cos (x)^{2}\right) \sec (x)^{2} \sqrt{\cos (x)^{3} \sin (x)} \sqrt{\cos (x) \sin (x)^{3}}}{4} \\
& \quad+\frac{\csc (x)^{2} \ln (\sin (x)) \sec (x)^{2} \sqrt{\cos (x)^{3} \sin (x)} \sqrt{\cos (x) \sin (x)^{3}}}{2}+\frac{4}{\sqrt{\tan (x)}}-\frac{\csc (x)^{2} \ln \left(1+\cos (x)^{2}\right) \sqrt{\cos (x) \sin (x)^{3}} \sqrt{\tan (x)}}{4} \\
& \quad+\frac{\csc (x)^{2} \ln (\sin (x)) \sqrt{\cos (x) \sin (x)^{3}} \sqrt{\tan (x)}}{2} \\
& \text { Result (type ?, } 23394 \text { leaves): Display of huge result suppressed! }
\end{aligned}
$$

Problem 115: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cos (2 x)^{3 / 2}}{\cos (x)^{3}} d x
$$

Optimal(type 3, 37 leaves, 6 steps):

$$
-\frac{5 \arctan \left(\frac{\sin (x)}{\sqrt{\cos (2 x)}}\right)}{2}+2 \arcsin (\sin (x) \sqrt{2}) \sqrt{2}-\frac{\sec (x) \sqrt{\cos (2 x)} \tan (x)}{2}
$$

Result (type 3, 99 leaves):

$$
\frac{\sqrt{\left(2 \cos (x)^{2}-1\right) \sin (x)^{2}}\left(-4 \sqrt{2} \arcsin \left(4 \cos (x)^{2}-3\right) \cos (x)^{2}+5 \arctan \left(\frac{3 \cos (x)^{2}-2}{2 \sqrt{-2 \sin (x)^{4}+\sin (x)^{2}}}\right) \cos (x)^{2}-2 \sqrt{-2 \sin (x)^{4}+\sin (x)^{2}}\right)}{4 \cos (x)^{2} \sin (x) \sqrt{2 \cos (x)^{2}-1}}
$$

Problem 116: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int\left(4-5 \sec (x)^{2}\right)^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 54 leaves, 7 steps):

$$
8 \arctan \left(\frac{2 \tan (x)}{\sqrt{-1-5 \tan (x)^{2}}}\right)-\frac{7 \arctan \left(\frac{\sqrt{5} \tan (x)}{\sqrt{-1-5 \tan (x)^{2}}}\right) \sqrt{5}}{2}-\frac{5 \sqrt{-1-5 \tan (x)^{2}} \tan (x)}{2}
$$

Result(type 4, 753 leaves):

$$
\begin{aligned}
& \frac{1}{\sqrt{-9-4 \sqrt{5}}(\sqrt{5}+2)(-1+\cos (x))\left(4 \cos (x)^{2}-5\right)^{2}}\left(-\frac{\mathrm{I}}{2}(\right. \\
& -70 \mathrm{I} \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \text { EllipticPi }\left(\frac{\sqrt{-9-4 \sqrt{5}}(-1+\cos (x))}{\sin (x)},-\frac{1}{9+4 \sqrt{5}},\right. \\
& \left.\frac{\sqrt{-9+4 \sqrt{5}}}{\sqrt{-9-4 \sqrt{5}}}\right) \sin (x) \cos (x)^{2} \sqrt{5} \sqrt{2} \\
& \\
& +3 \mathrm{I} \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \text { EllipticF }\left(\frac{\mathrm{I}(\sqrt{5}+2)(-1+\cos (x))}{\sin (x)}, 9\right. \\
& -4 \sqrt{5}) \sin (x) \cos (x)^{2} \sqrt{5} \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& +64 \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \text { EllipticPi } \frac{\sqrt{-9-4 \sqrt{5}}(-1+\cos (x))}{\sin (x)}, \frac{1}{9+4 \sqrt{5}}, \\
& \left.\frac{\sqrt{-9+4 \sqrt{5}}}{\sqrt{-9-4 \sqrt{5}}}\right) \sin (x) \cos (x)^{2} \sqrt{5} \sqrt{2} \\
& -140 I \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \text { EllipticPi } \frac{\sqrt{-9-4 \sqrt{5}}(-1+\cos (x))}{\sin (x)} \text {, } \\
& \left.-\frac{1}{9+4 \sqrt{5}}, \frac{\sqrt{-9+4 \sqrt{5}}}{\sqrt{-9-4 \sqrt{5}}}\right) \sin (x) \cos (x)^{2} \sqrt{2} \\
& +6 \mathrm{I} \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \text { EllipticF }\left(\frac{\mathrm{I}(\sqrt{5}+2)(-1+\cos (x))}{\sin (x)}, 9\right. \\
& -4 \sqrt{5}) \sin (x) \cos (x)^{2} \sqrt{2} \\
& +128 \text { I } \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \text { EllipticPi }\left(\frac{\sqrt{-9-4 \sqrt{5}}(-1+\cos (x))}{\sin (x)}, \frac{1}{9+4 \sqrt{5}},\right. \\
& \left.\left.\frac{\sqrt{-9+4 \sqrt{5}}}{\sqrt{-9-4 \sqrt{5}}}\right) \sin (x) \cos (x)^{2} \sqrt{2}+80 \cos (x)^{3} \sqrt{5}+180 \cos (x)^{3}-80 \cos (x)^{2} \sqrt{5}-180 \cos (x)^{2}-100 \cos (x) \sqrt{5}-225 \cos (x)+100 \sqrt{5}+225\right) \\
& \left.\left(\frac{4 \cos (x)^{2}-5}{\cos (x)^{2}}\right)^{3 / 2} \sin (x) \cos (x)\right)
\end{aligned}
$$

Problem 117: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{-2 \cot (x)^{2}+\sin (x)}{\left(1+5 \tan (x)^{2}\right)^{3 / 2}} d x
$$

Optimal(type 3, 74 leaves, 10 steps):

$$
-\frac{\operatorname{arctanh}\left(\frac{2 \tan (x)}{\sqrt{1+5 \tan (x)^{2}}}\right)}{4}-\frac{\cos (x)}{4 \sqrt{1+5 \tan (x)^{2}}}-\frac{5 \cot (x)}{2 \sqrt{1+5 \tan (x)^{2}}}-\frac{\cos (x) \sqrt{1+5 \tan (x)^{2}}}{8}+\frac{9 \cot (x) \sqrt{1+5 \tan (x)^{2}}}{2}
$$

Result(type 4, 974 leaves):

$$
\begin{aligned}
& \frac{1}{(\sqrt{5}+2)^{2} \sqrt{-9+4 \sqrt{5}}(\sqrt{5}-2)^{2}\left(4 \cos (x)^{2}-5\right)^{2} \sin (x)}\left(\frac { I } { 8 } \left(- 8 \text { IEllipticPi } \left(\frac{\sqrt{-9+4 \sqrt{5}}(-1+\cos (x))}{\sin (x)},-\frac{1}{-9+4 \sqrt{5}},\right.\right.\right. \\
& \left.\frac{\sqrt{-9-4 \sqrt{5}}}{\sqrt{-9+4 \sqrt{5}}}\right) \sqrt{2} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sin (x) \\
& -3 I \sin (x) \operatorname{arctanh}\left(\frac{\sqrt{-16} \cos (x)(-1+\cos (x))}{2 \sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{5} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}} \\
& +6 \mathrm{I} \sin (x) \cos (x) \operatorname{arctanh}\left(\frac{\sqrt{-16} \cos (x)(-1+\cos (x))}{2 \sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}} \\
& +6 \text { I } \operatorname{arctanh}\left(\frac{\sqrt{-16} \cos (x)(-1+\cos (x))}{2 \sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}} \sin (x)-8 \mathrm{I} \cos (x) \text { EllipticPi }\left(\frac{\sqrt{-9+4 \sqrt{5}}(-1+\cos (x))}{\sin (x)},-\frac{1}{-9+4 \sqrt{5}},\right. \\
& \left.\frac{\sqrt{-9-4 \sqrt{5}}}{\sqrt{-9+4 \sqrt{5}}}\right) \sqrt{2} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sin (x) \\
& \text { +4 I EllipticF }\left(\frac{\mathrm{I}(\sqrt{5}-2)(-1+\cos (x))}{\sin (x)}, 9\right. \\
& +4 \sqrt{5}) \sqrt{2} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sin (x) \\
& +4 \mathrm{I} \cos (x) \text { EllipticF }\left(\frac{\mathrm{I}(\sqrt{5}-2)(-1+\cos (x))}{\sin (x)}, 9\right.
\end{aligned}
$$

$$
+4 \sqrt{5}) \sqrt{2} \sqrt{\frac{2 \cos (x) \sqrt{5}-4 \cos (x)-2 \sqrt{5}+5}{1+\cos (x)}} \sqrt{-\frac{2(2 \cos (x) \sqrt{5}-2 \sqrt{5}+4 \cos (x)-5)}{1+\cos (x)}} \sin (x)
$$

$$
-3 \cos (x) \arctan \left(\frac{2 \cos (x)(-1+\cos (x))}{\sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{5} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}} \sin (x)
$$

$-31 \sin (x) \cos (x) \operatorname{arctanh}\left(\frac{\sqrt{-16} \cos (x)(-1+\cos (x))}{2 \sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{5} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}+2 \sin (x) \cos (x)^{2} \sqrt{5}$
$+6 \cos (x) \arctan \left(\frac{2 \cos (x)(-1+\cos (x))}{\sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}} \sin (x)$
$-3 \arctan \left(\frac{2 \cos (x)(-1+\cos (x))}{\sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{5} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}} \sin (x)-4 \cos (x)^{2} \sin (x)$
$\left.+6 \arctan \left(\frac{2 \cos (x)(-1+\cos (x))}{\sin (x)^{2} \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}}}\right) \sqrt{-\frac{4 \cos (x)^{2}-5}{(1+\cos (x))^{2}}} \sin (x)-164 \cos (x)^{2} \sqrt{5}-5 \sin (x) \sqrt{5}+328 \cos (x)^{2}+10 \sin (x)+180 \sqrt{5}-360\right)$
$\left.\cos (x)^{3}\left(-\frac{4 \cos (x)^{2}-5}{\cos (x)^{2}}\right)^{3 / 2}\right)$

Problem 119: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sec (x)^{2}-3 \sqrt{4 \sec (x)^{2}+5 \tan (x)^{2}} \tan (x)}{\sin (x)^{2}\left(4 \sec (x)^{2}+5 \tan (x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 45 leaves, 10 steps):

$$
-\frac{3 \ln (\tan (x))}{4}+\frac{3 \ln \left(4+9 \tan (x)^{2}\right)}{8}-\frac{\cot (x)}{4 \sqrt{4+9 \tan (x)^{2}}}-\frac{7 \tan (x)}{8 \sqrt{4+9 \tan (x)^{2}}}
$$

Result(type 3, 116 leaves):
$-\frac{1}{8 \sin (x) \cos (x)^{3}\left(-\frac{5 \cos (x)^{2}-9}{\cos (x)^{2}}\right)^{3 / 2}}\left(6 \sin (x) \cos (x)^{3}\left(-\frac{5 \cos (x)^{2}-9}{\cos (x)^{2}}\right)^{3 / 2} \ln \left(-\frac{-1+\cos (x)}{\sin (x)}\right)-3 \sin (x) \cos (x)^{3}\left(-\frac{5 \cos (x)^{2}-9}{\cos (x)^{2}}\right)^{3 / 2} \ln (\right.$

$$
\left.\left.-\frac{5 \cos (x)^{2}-9}{(1+\cos (x))^{2}}\right)+25 \cos (x)^{4}-80 \cos (x)^{2}+63\right)
$$

Problem 120: Unable to integrate problem.

$$
\int \frac{\cot (x)}{\left(a^{4}+b^{4} \csc (x)^{2}\right)^{1 / 4}} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 6 steps):

$$
-\frac{\arctan \left(\frac{\left(a^{4}+b^{4} \csc (x)^{2}\right)^{1 / 4}}{a}\right)}{a}+\frac{\operatorname{arctanh}\left(\frac{\left(a^{4}+b^{4} \csc (x)^{2}\right)^{1 / 4}}{a}\right)}{a}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\cot (x)}{\left(a^{4}+b^{4} \csc (x)^{2}\right)^{1 / 4}} \mathrm{~d} x
$$

Problem 121: Result more than twice size of optimal antiderivative.

$$
\int \frac{-\cos (2 x)+2 \tan (x)^{2}}{\cos (x)^{2}(\tan (x) \tan (2 x))^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 78 leaves, ? steps):

$$
2 \operatorname{arctanh}\left(\frac{\tan (x)}{\sqrt{\tan (x) \tan (2 x)}}\right)-\frac{11 \operatorname{arctanh}\left(\frac{\sqrt{2} \tan (x)}{\sqrt{\tan (x) \tan (2 x)}}\right) \sqrt{2}}{8}+\frac{3 \tan (x)}{4 \sqrt{\tan (x) \tan (2 x)}}+\frac{\tan (x)}{2(\tan (x) \tan (2 x))^{3 / 2}}+\frac{2 \tan (x)^{3}}{3(\tan (x) \tan (2 x))^{3 / 2}}
$$

Result(type 3, 558 leaves):
$\frac{1}{96 \sin (x)^{3} \cos (x)^{3}\left(\frac{\sin (x)^{2}}{2 \cos (x)^{2}-1}\right)^{3 / 2}\left(\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}\right)^{3 / 2}}\left(\sqrt{2} \sqrt{4}(-1+\cos (x))^{2}\left(48 \cos (x)^{4} \sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2} \cos (x) \sqrt{4}(-1+\cos (x))}{2 \sin (x)^{2}} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}\right)\right.\right.$
$-33 \cos (x)^{4} \operatorname{arctanh}\left(\frac{\sqrt{4}\left(2 \cos (x)^{2}-3 \cos (x)+1\right)}{2 \sin (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}}\right)+168 \cos (x)^{4} \ln ($

$$
\begin{aligned}
& \left.-\frac{4\left(\cos (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}-2 \cos (x)^{2}+\cos (x)-\sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}+1\right)}{\sin (x)^{2}}\right)-201 \cos (x)^{4} \ln (\\
& \left.-\frac{2\left(\cos (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}-2 \cos (x)^{2}+\cos (x)-\sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}+1\right)}{\sin (x)^{2}}\right)-22 \cos (x)^{4} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}
\end{aligned}
$$

$$
-48 \cos (x)^{3} \sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2} \cos (x) \sqrt{4}(-1+\cos (x))}{2 \sin (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}}\right)+33 \cos (x)^{3} \operatorname{arctanh}\left(\frac{\sqrt{4}\left(2 \cos (x)^{2}-3 \cos (x)+1\right)}{2 \sin (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}}\right)-168 \cos (x)^{3} \ln (
$$

$$
\left.-\frac{4\left(\cos (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}-2 \cos (x)^{2}+\cos (x)-\sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}+1\right)}{\sin (x)^{2}}\right)+201 \cos (x)^{3} \ln (
$$

$$
\left.\left.\left.-\frac{2\left(\cos (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}-2 \cos (x)^{2}+\cos (x)-\sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}+1\right)}{\sin (x)^{2}}\right)+36 \cos (x)^{2} \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}-8 \sqrt{\frac{2 \cos (x)^{2}-1}{(1+\cos (x))^{2}}}\right)\right)
$$

Problem 122: Unable to integrate problem.

$$
\int \frac{\cot (x)\left(1+\left(1-8 \tan (x)^{2}\right)^{1 / 3}\right)}{\cos (x)^{2}\left(1-8 \tan (x)^{2}\right)^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 23 leaves, 15 steps):

$$
-\ln (\tan (x))+\frac{3 \ln \left(1-\left(1-8 \tan (x)^{2}\right)^{1 / 3}\right)}{2}
$$

Result(type 8, 31 leaves):

$$
\int \frac{\cot (x)\left(1+\left(1-8 \tan (x)^{2}\right)^{1 / 3}\right)}{\cos (x)^{2}\left(1-8 \tan (x)^{2}\right)^{2 / 3}} \mathrm{~d} x
$$

Problem 123: Unable to integrate problem.

$$
\int \frac{\left(5 \cos (x)^{2}-\sqrt{-1+5 \sin (x)^{2}}\right) \tan (x)}{\left(-1+5 \sin (x)^{2}\right)^{1 / 4}\left(2+\sqrt{-1+5 \sin (x)^{2}}\right)} \mathrm{d} x
$$

Optimal(type 3, 81 leaves, 14 steps):

$$
2\left(-1+5 \sin (x)^{2}\right)^{1 / 4}-\frac{3 \arctan \left(\frac{\left(-1+5 \sin (x)^{2}\right)^{1 / 4} \sqrt{2}}{2}\right) \sqrt{2}}{2}-\frac{\operatorname{arctanh}\left(\frac{\left(-1+5 \sin (x)^{2}\right)^{1 / 4} \sqrt{2}}{2}\right) \sqrt{2}}{4}-\frac{\left(-1+5 \sin (x)^{2}\right)^{1 / 4}}{2\left(2+\sqrt{-1+5 \sin (x)^{2}}\right)}
$$

Result(type 8, 48 leaves):

$$
\int \frac{\left(5 \cos (x)^{2}-\sqrt{-1+5 \sin (x)^{2}}\right) \tan (x)}{\left(-1+5 \sin (x)^{2}\right)^{1 / 4}\left(2+\sqrt{-1+5 \sin (x)^{2}}\right)} \mathrm{d} x
$$

Problem 139: Unable to integrate problem.

$$
\int\left(1+a^{m x}\right)^{n} \mathrm{~d} x
$$

Optimal(type 5, 42 leaves, 2 steps):

$$
-\frac{\left(1+a^{m x}\right)^{1+n} \text { hypergeom }\left([1,1+n],[2+n], 1+a^{m x}\right)}{m(1+n) \ln (a)}
$$

Result(type 8, 11 leaves):

$$
\int\left(1+a^{m x}\right)^{n} \mathrm{~d} x
$$

Problem 147: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{x}}{1-\cos (x)} \mathrm{d} x
$$

Optimal(type 5, 25 leaves, 2 steps):

$$
(-1+\mathrm{I}) \mathrm{e}^{(1+\mathrm{I}) x} \text { hypergeom }\left([2,1-\mathrm{I}],[2-\mathrm{I}], \mathrm{e}^{\mathrm{I} x}\right)
$$

Result(type 8, 31 leaves):

$$
-\frac{2 \mathrm{I}^{x}}{\mathrm{e}^{\mathrm{I} x}-1}+\int \frac{2 \mathrm{I}^{x}}{\mathrm{e}^{\mathrm{I} x}-1} \mathrm{~d} x
$$

Problem 148: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{e}^{x}(1-\sin (x))}{1-\cos (x)} \mathrm{d} x
$$

Optimal(type 3, 14 leaves, 1 step):

$$
-\frac{\mathrm{e}^{x} \sin (x)}{1-\cos (x)}
$$

Result(type 3, 32 leaves):

$$
\frac{-\mathrm{e}^{x} \tan \left(\frac{x}{2}\right)^{2}-\mathrm{e}^{x}}{\left(\tan \left(\frac{x}{2}\right)^{2}+1\right) \tan \left(\frac{x}{2}\right)}
$$

Problem 149: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{x}(1+\sin (x))}{1-\cos (x)} \mathrm{d} x
$$

Optimal(type 5, 39 leaves, 7 steps):

$$
(-2+2 \mathrm{I}) \mathrm{e}^{(1+\mathrm{I}) x} \text { hypergeom }\left([2,1-\mathrm{I}],[2-\mathrm{I}], \mathrm{e}^{\mathrm{I} x}\right)+\frac{\mathrm{e}^{x} \sin (x)}{1-\cos (x)}
$$

Result(type 8, 36 leaves):

$$
\mathrm{Ie}^{x}-\frac{2 \mathrm{Ie}^{x}}{\mathrm{e}^{\mathrm{I} x}-1}+\int \frac{4 \mathrm{I} \mathrm{e}^{x}}{\mathrm{e}^{\mathrm{I} x}-1} \mathrm{~d} x
$$

Problem 151: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{x}(1-\cos (x))}{1-\sin (x)} \mathrm{d} x
$$

Optimal(type 5, 43 leaves, 7 steps):

$$
(2+2 \mathrm{I}) \mathrm{e}^{(1+\mathrm{I}) x} \text { hypergeom }\left([2,1-\mathrm{I}],[2-\mathrm{I}],-\mathrm{I} \mathrm{e}^{\mathrm{I} x}\right)-\frac{\mathrm{e}^{x} \cos (x)}{1-\sin (x)}
$$

Result(type 8, 36 leaves):

$$
\mathrm{I} \mathrm{e}^{x}+\frac{2 \mathrm{e}^{x}}{\mathrm{e}^{\mathrm{I} x}-\mathrm{I}}+\int-\frac{4 \mathrm{e}^{x}}{\mathrm{e}^{\mathrm{I} x}-\mathrm{I}} \mathrm{~d} x
$$

Problem 152: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{e}^{x}(1+\cos (x))}{1-\sin (x)} \mathrm{d} x
$$

Optimal(type 3, 13 leaves, 1 step):

$$
\frac{\mathrm{e}^{x} \cos (x)}{1-\sin (x)}
$$

Result(type 3, 52 leaves):

$$
\frac{-\mathrm{e}^{x} \tan \left(\frac{x}{2}\right)-\mathrm{e}^{x} \tan \left(\frac{x}{2}\right)^{2}-\mathrm{e}^{x} \tan \left(\frac{x}{2}\right)^{3}-\mathrm{e}^{x}}{\left(\tan \left(\frac{x}{2}\right)^{2}+1\right)\left(\tan \left(\frac{x}{2}\right)-1\right)}
$$

Problem 159: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\mathrm{e}^{2 x} \cosh (x)^{4}} \mathrm{~d} x
$$

Optimal(type 3, 10 leaves, 3 steps):

$$
-\frac{8}{3\left(1+\mathrm{e}^{2 x}\right)^{3}}
$$

Result(type 3, 51 leaves):

$$
-\frac{2\left(-\tanh \left(\frac{x}{2}\right)^{5}+2 \tanh \left(\frac{x}{2}\right)^{4}-\frac{10 \tanh \left(\frac{x}{2}\right)^{3}}{3}+2 \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)\right)}{\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)^{3}}
$$

Problem 171: Unable to integrate problem.

$$
\int \frac{\ln (\ln (x))^{n}}{x} \mathrm{~d} x
$$

Optimal(type 4, 24 leaves, 3 steps):

$$
\frac{\Gamma(1+n,-\ln (\ln (x))) \ln (\ln (x))^{n}}{(-\ln (\ln (x)))^{n}}
$$

Result(type 8, 11 leaves):

$$
\int \frac{\ln (\ln (x))^{n}}{x} \mathrm{~d} x
$$

Problem 173: Result more than twice size of optimal antiderivative.

$$
\int \frac{\ln \left(\cos \left(\frac{x}{2}\right)\right)}{1+\cos (x)} \mathrm{d} x
$$

Optimal(type 3, 22 leaves, 4 steps):

$$
-\frac{x}{2}+\frac{\ln \left(\cos \left(\frac{x}{2}\right)\right) \sin (x)}{1+\cos (x)}+\tan \left(\frac{x}{2}\right)
$$

Result(type 3, 163 leaves):

$$
-\frac{2 \mathrm{I} \ln \left(\mathrm{e}^{\frac{\mathrm{I}}{2} x}\right)}{\mathrm{e}^{\mathrm{I} x}+1}+\frac{1}{\mathrm{e}^{\mathrm{I} x}+1}\left(\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{\mathrm{I} x}+1\right)\right) \operatorname{csgn}\left(\mathrm{I} \mathrm{e}^{-\frac{\mathrm{I}}{2} x}\right) \operatorname{csgn}\left(\mathrm{I} \cos \left(\frac{x}{2}\right)\right)-\pi \operatorname{csgn}\left(\mathrm{I}\left(\mathrm{e}^{\mathrm{I} x}+1\right)\right) \operatorname{csgn}\left(\mathrm{I} \cos \left(\frac{x}{2}\right)\right)^{2}\right.
$$

$\left.-\pi \operatorname{csgn}\left(I e^{-\frac{\mathrm{I}}{2} x}\right) \operatorname{csgn}\left(\mathrm{I} \cos \left(\frac{x}{2}\right)\right)^{2}+\pi \operatorname{cosgn}\left(\mathrm{I} \cos \left(\frac{x}{2}\right)\right)^{3}-\mathrm{I} \ln \left(\mathrm{e}^{\mathrm{I} x}+1\right) \mathrm{e}^{\mathrm{I} x}-x \mathrm{e}^{\mathrm{I} x}-2 \mathrm{I} \ln (2)+\mathrm{I} \ln \left(\mathrm{e}^{\mathrm{I} x}+1\right)+2 \mathrm{I}-x\right)$

Problem 175: Result more than twice size of optimal antiderivative.

$$
\int x^{3}\left(-x^{2}+1\right)^{3 / 2} \arccos (x) \mathrm{d} x
$$

Optimal(type 3, 45 leaves, 4 steps):

$$
-\frac{2 x}{35}-\frac{x^{3}}{105}+\frac{8 x^{5}}{175}-\frac{x^{7}}{49}-\frac{\left(-x^{2}+1\right)^{5 / 2} \arccos (x)}{5}+\frac{\left(-x^{2}+1\right)^{7 / 2} \arccos (x)}{7}
$$

Result(type 3, 429 leaves):

$$
\begin{aligned}
&(\mathrm{I}+7 \arccos (x))\left(64 \mathrm{I} x^{7}-64 \sqrt{-x^{2}+1} x^{6}-112 \mathrm{I} x^{5}+80 \sqrt{-x^{2}+1} x^{4}+56 \mathrm{I} x^{3}-24 x^{2} \sqrt{-x^{2}+1}-7 \mathrm{I} x+\sqrt{-x^{2}+1}\right) \\
& 6272 \\
&-\frac{(\mathrm{I}+5 \arccos (x))\left(16 \mathrm{I} x^{5}-16 \sqrt{-x^{2}+1} x^{4}-20 \mathrm{I} x^{3}+12 x^{2} \sqrt{-x^{2}+1}+5 \mathrm{I} x-\sqrt{-x^{2}+1}\right)}{3200} \\
&-\frac{(\mathrm{I}+3 \arccos (x))\left(4 \mathrm{I} x^{3}-4 x^{2} \sqrt{-x^{2}+1}-3 \mathrm{I} x+\sqrt{-x^{2}+1}\right)}{384}+\frac{3(\arccos (x)+\mathrm{I})\left(\mathrm{I} x-\sqrt{-x^{2}+1}\right)}{128}-\frac{3(\arccos (x)-\mathrm{I})\left(\mathrm{I} x+\sqrt{-x^{2}+1}\right)}{128} \\
&+\frac{(-\mathrm{I}+3 \arccos (x))\left(4 \mathrm{I} x^{3}+4 x^{2} \sqrt{-x^{2}+1}-3 \mathrm{I} x-\sqrt{-x^{2}+1}\right)}{384} \\
&+\frac{(-\mathrm{I}+5 \arccos (x))\left(16 \mathrm{I} x^{5}+16 \sqrt{-x^{2}+1} x^{4}-20 \mathrm{I} x^{3}-12 x^{2} \sqrt{-x^{2}+1}+5 \mathrm{I} x+\sqrt{-x^{2}+1}\right)}{3200} \\
&-\frac{(-\mathrm{I}+7 \arccos (x))\left(64 \mathrm{I} x^{7}+64 \sqrt{-x^{2}+1} x^{6}-112 \mathrm{I} x^{5}-80 \sqrt{-x^{2}+1} x^{4}+56 \mathrm{I} x^{3}+24 x^{2} \sqrt{-x^{2}+1}-7 \mathrm{I} x-\sqrt{-x^{2}+1}\right)}{6272}
\end{aligned}
$$

Problem 176: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(-x^{2}+1\right)^{3 / 2} \arccos (x)}{x} \mathrm{~d} x
$$

Optimal(type 4, 98 leaves, 10 steps):
$\frac{4 x}{3}-\frac{x^{3}}{9}+\frac{\left(-x^{2}+1\right)^{3 / 2} \arccos (x)}{3}+2 \mathrm{I} \arccos (x) \arctan \left(x+\mathrm{I} \sqrt{-x^{2}+1}\right)-\mathrm{I} \operatorname{polylog}\left(2,-\mathrm{I}\left(x+\mathrm{I} \sqrt{-x^{2}+1}\right)\right)+\mathrm{I} \operatorname{polylog}\left(2, \mathrm{I}\left(x+\mathrm{I} \sqrt{-x^{2}+1}\right)\right)$

$$
+\arccos (x) \sqrt{-x^{2}+1}
$$

Result(type 4, 226 leaves):
$\frac{(\mathrm{I}+3 \arccos (x))\left(4 \mathrm{I} x^{3}-4 x^{2} \sqrt{-x^{2}+1}-3 \mathrm{I} x+\sqrt{-x^{2}+1}\right)}{72}-\frac{5(\arccos (x)+\mathrm{I})\left(\mathrm{I} x-\sqrt{-x^{2}+1}\right)}{8}+\frac{5(\arccos (x)-\mathrm{I})\left(\mathrm{I} x+\sqrt{-x^{2}+1}\right)}{8}$

$$
\begin{aligned}
& -\frac{(-\mathrm{I}+3 \arccos (x))\left(4 \mathrm{I} x^{3}+4 x^{2} \sqrt{-x^{2}+1}-3 \mathrm{I} x-\sqrt{-x^{2}+1}\right)}{72}+\ln \left(1+\mathrm{I}\left(x+\mathrm{I} \sqrt{-x^{2}+1}\right)\right) \arccos (x)-\ln \left(1-\mathrm{I}\left(x+\mathrm{I} \sqrt{-x^{2}+1}\right)\right) \arccos (x) \\
& -\mathrm{I} \mathrm{dilog}\left(1+\mathrm{I}\left(x+\mathrm{I} \sqrt{-x^{2}+1}\right)\right)+\mathrm{Idilog}\left(1-\mathrm{I}\left(x+\mathrm{I} \sqrt{-x^{2}+1}\right)\right)
\end{aligned}
$$

Problem 177: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \arccos (x)}{\left(-x^{2}+1\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 15 leaves, 2 steps):

$$
\operatorname{arctanh}(x)+\frac{\arccos (x)}{\sqrt{-x^{2}+1}}
$$

Result(type 3, 46 leaves):

$$
-\frac{\sqrt{-x^{2}+1} \arccos (x)}{x^{2}-1}-\ln \left(\frac{1}{\sqrt{-x^{2}+1}}-\frac{x}{\sqrt{-x^{2}+1}}\right)
$$

Problem 179: Result more than twice size of optimal antiderivative.

$$
\int \frac{x^{3} \arcsin (x)}{\left(-x^{2}+1\right)^{3 / 2}} d x
$$

Optimal(type 3, 32 leaves, 3 steps):

$$
-x-\operatorname{arctanh}(x)+\frac{\arcsin (x)}{\sqrt{-x^{2}+1}}+\arcsin (x) \sqrt{-x^{2}+1}
$$

Result(type 3, 101 leaves):

$$
\frac{(\arcsin (x)+\mathrm{I})\left(\mathrm{I} x+\sqrt{-x^{2}+1}\right)}{2}-\frac{\left(\mathrm{I} x-\sqrt{-x^{2}+1}\right)(\arcsin (x)-\mathrm{I})}{2}-\frac{\sqrt{-x^{2}+1} \arcsin (x)}{x^{2}-1}-\ln \left(\mathrm{I} x+\sqrt{-x^{2}+1}+\mathrm{I}\right)+\ln \left(\mathrm{I} x+\sqrt{-x^{2}+1}-\mathrm{I}\right)
$$

Problem 185: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arcsec}(x)}{\left(x^{2}-1\right)^{5 / 2}} d x
$$

Optimal(type 3, 49 leaves, 4 steps):

$$
\frac{5 \operatorname{arccoth}\left(\sqrt{x^{2}}\right)}{6}-\frac{x \operatorname{arcsec}(x)}{3\left(x^{2}-1\right)^{3 / 2}}+\frac{\sqrt{x^{2}}}{6\left(-x^{2}+1\right)}+\frac{2 x \operatorname{arcsec}(x)}{3 \sqrt{x^{2}-1}}
$$

Result(type 3, 127 leaves):
$\frac{\sqrt{x^{2}-1} x\left(4 \operatorname{arcsec}(x) x^{2}-\sqrt{\frac{x^{2}-1}{x^{2}}} x-6 \operatorname{arcsec}(x)\right)}{6\left(x^{4}-2 x^{2}+1\right)}+\frac{5 \sqrt{\frac{x^{2}-1}{x^{2}}} x \ln \left(\frac{1}{x}+\mathrm{I} \sqrt{1-\frac{1}{x^{2}}}+1\right)}{6 \sqrt{x^{2}-1}}-\frac{5 \sqrt{\frac{x^{2}-1}{x^{2}} x \ln \left(\frac{1}{x}+\mathrm{I} \sqrt{1-\frac{1}{x^{2}}}-1\right)}}{6 \sqrt{x^{2}-1}}$

Problem 186: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arccsc}(x)}{x^{2}\left(x^{2}-1\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 56 leaves, 5 steps):

$$
-\frac{11 \operatorname{arccoth}\left(\sqrt{x^{2}}\right)}{6}+\frac{\left(8 x^{4}-12 x^{2}+3\right) \operatorname{arccsc}(x)}{3 x\left(x^{2}-1\right)^{3 / 2}}-\frac{1}{\sqrt{x^{2}}}+\frac{\sqrt{x^{2}}}{6\left(x^{2}-1\right)}
$$

Result(type 3, 202 leaves):
$\frac{\left(\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x+x^{2}-1\right)(\operatorname{arccsc}(x)+\mathrm{I})}{2 \sqrt{x^{2}-1} x}+\frac{\left(-\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x+x^{2}-1\right)(\operatorname{arccsc}(x)-\mathrm{I})}{2 \sqrt{x^{2}-1} x}+\frac{\sqrt{x^{2}-1} x\left(10 \operatorname{arccsc}(x) x^{2}+\sqrt{\frac{x^{2}-1}{x^{2}}} x-12 \operatorname{arccsc}(x)\right)}{6\left(x^{4}-2 x^{2}+1\right)}$

$$
-\frac{11 \sqrt{\frac{x^{2}-1}{x^{2}}} x \ln \left(\frac{\mathrm{I}}{x}+\sqrt{1-\frac{1}{x^{2}}}+\mathrm{I}\right)}{6 \sqrt{x^{2}-1}}+\frac{11 \sqrt{\frac{x^{2}-1}{x^{2}}} x \ln \left(\frac{\mathrm{I}}{x}+\sqrt{1-\frac{1}{x^{2}}}-\mathrm{I}\right)}{6 \sqrt{x^{2}-1}}
$$

Problem 187: Result more than twice size of optimal antiderivative.

$$
\int \frac{\left(x^{2}-1\right)^{3 / 2} \operatorname{arcsec}(x)^{2}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 3, 105 leaves, 11 steps):

$$
-\frac{\left(x^{2}-1\right)^{3 / 2} \operatorname{arcsec}(x)^{2}}{4 x^{4}}-\frac{3 \operatorname{arcsec}(x)}{8 x \sqrt{x^{2}}}+\frac{9 x \operatorname{arcsec}(x)}{64 \sqrt{x^{2}}}+\frac{\left(x^{2}-1\right)^{2} \operatorname{arcsec}(x)}{8 x^{3} \sqrt{x^{2}}}+\frac{x \operatorname{arcsec}(x)^{3}}{8 \sqrt{x^{2}}}+\frac{\left(17 x^{2}-2\right) \sqrt{x^{2}-1}}{64 x^{4}}-\frac{3 \operatorname{arcsec}(x)^{2} \sqrt{x^{2}-1}}{8 x^{2}}
$$

Result(type 3, 326 leaves):
$\frac{\sqrt{\frac{x^{2}-1}{x^{2}}} x \operatorname{arcsec}(x)^{3}}{8 \sqrt{x^{2}-1}}-\frac{\left(\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{5}-8 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{3}+4 x^{4}+8 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x-12 x^{2}+8\right)\left(4 \mathrm{I} \operatorname{arcsec}(x)+8 \operatorname{arcsec}(x)^{2}-1\right)}{512 \sqrt{x^{2}-1} x^{4}}$
$-\left(\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{3}-2 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x+2 x^{2}-2\right)\left(2 \operatorname{arcsec}(x)^{2}-1+2 \mathrm{I} \operatorname{arcsec}(x)\right)$
$16 \sqrt{x^{2}-1} x^{2}$

$$
\begin{aligned}
& +\frac{\left(\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{3}-2 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x-2 x^{2}+2\right)\left(2 \operatorname{arcsec}(x)^{2}-1-2 \mathrm{I} \operatorname{arcsec}(x)\right)}{16 \sqrt{x^{2}-1} x^{2}} \\
& +\frac{\left(\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{5}-8 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{3}-4 x^{4}+8 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x+12 x^{2}-8\right)\left(-4 \mathrm{I} \operatorname{arcsec}(x)+8 \operatorname{arcsec}(x)^{2}-1\right)}{512 \sqrt{x^{2}-1} x^{4}}
\end{aligned}
$$

Problem 188: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{arcsec}(x)^{3} \sqrt{x^{2}-1}}{x^{4}} \mathrm{~d} x
$$

Optimal(type 3, 92 leaves, 8 steps):

$$
-\frac{2\left(x^{2}-1\right)^{3 / 2} \operatorname{arcsec}(x)}{9 x^{3}}+\frac{\left(x^{2}-1\right)^{3 / 2} \operatorname{arcsec}(x)^{3}}{3 x^{3}}+\frac{2\left(-21 x^{2}+1\right)}{27 x^{2} \sqrt{x^{2}}}+\frac{2 \operatorname{arcsec}(x)^{2}}{3 \sqrt{x^{2}}}+\frac{\left(x^{2}-1\right) \operatorname{arcsec}(x)^{2}}{3 x^{2} \sqrt{x^{2}}}-\frac{4 \operatorname{arcsec}(x) \sqrt{x^{2}-1}}{3 x}
$$

Result(type 3, 249 leaves):

$$
\left(-5 x^{2}+4-3 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{3}+x^{4}+4 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x\right)\left(9 \mathrm{I} \operatorname{arcsec}(x)^{2}+9 \operatorname{arcsec}(x)^{3}-2 \mathrm{I}-6 \operatorname{arcsec}(x)\right)
$$

$$
216 \sqrt{x^{2}-1} x^{3}
$$

$$
+\frac{\left(-\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x+x^{2}-1\right)\left(\operatorname{arcsec}(x)^{3}-6 \operatorname{arcsec}(x)+3 \operatorname{Iarcsec}(x)^{2}-6 \mathrm{I}\right)}{8 \sqrt{x^{2}-1} x}
$$

$$
+\frac{\left(\mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x+x^{2}-1\right)\left(\operatorname{arcsec}(x)^{3}-6 \operatorname{arcsec}(x)-3 \mathrm{I} \operatorname{arcsec}(x)^{2}+6 \mathrm{I}\right)}{8 \sqrt{x^{2}-1} x}
$$

$$
+\frac{\left(3 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x^{3}+x^{4}-4 \mathrm{I} \sqrt{\frac{x^{2}-1}{x^{2}}} x-5 x^{2}+4\right)\left(-9 \mathrm{I} \operatorname{arcsec}(x)^{2}+9 \operatorname{arcsec}(x)^{3}+2 \mathrm{I}-6 \operatorname{arcsec}(x)\right)}{216 \sqrt{x^{2}-1} x^{3}}
$$

Problem 193: Unable to integrate problem.

$$
\int \arcsin (\sinh (x)) \operatorname{sech}(x)^{4} \mathrm{~d} x
$$

Optimal(type 3, 40 leaves, 5 steps):

$$
-\frac{2 \arcsin \left(\frac{\cosh (x) \sqrt{2}}{2}\right)}{3}+\frac{\operatorname{sech}(x) \sqrt{1-\sinh (x)^{2}}}{6}+\arcsin (\sinh (x)) \tanh (x)-\frac{\arcsin (\sinh (x)) \tanh (x)^{3}}{3}
$$

Result(type 8, 10 leaves):

$$
\int \arcsin (\sinh (x)) \operatorname{sech}(x)^{4} \mathrm{~d} x
$$

Test results for the 32 problems in "Welz Problems.txt"

Problem 2: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative

$$
\int \frac{\sqrt{b^{2} x^{2}+2 a^{2}+b^{2}}}{-b\left(2 a^{2}+b^{2}\right)+4 a\left(2 a^{2}+b^{2}\right) x-b^{3} x^{2}+8 a\left(a^{2}+b^{2}\right) x^{3}+b\left(2 a^{2}+b^{2}\right) x^{4}+4 a b^{2} x^{5}+b^{3} x^{6}} \mathrm{~d} x
$$

Optimal(type 1, 1 leaves, 0 steps):

0

Result(type ?, 8793 leaves): Display of huge result suppressed!
Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{x^{2}-1}}{(-\mathrm{I}+x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 52 leaves, 6 steps):

$$
\operatorname{arctanh}\left(\frac{x}{\sqrt{x^{2}-1}}\right)-\frac{\mathrm{I} \arctan \left(\frac{(1-\mathrm{I} x) \sqrt{2}}{2 \sqrt{x^{2}-1}}\right) \sqrt{2}}{2}+\frac{\sqrt{x^{2}-1}}{\mathrm{I}-x}
$$

Result(type 3, 124 leaves):

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{x^{2}-1}\left(\sqrt{x}+\sqrt{x^{2}-1}\right)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 158 leaves, ? steps):

$$
\frac{2-4 x}{5\left(\sqrt{x}+\sqrt{x^{2}-1}\right)}-\frac{\arctan \left(\frac{\sqrt{x^{2}-1} \sqrt{-2+2 \sqrt{5}}}{2-x(-\sqrt{5}+1)}\right) \sqrt{-110+50 \sqrt{5}}}{50}+\frac{\arctan \left(\frac{\sqrt{x} \sqrt{2+2 \sqrt{5}}) \sqrt{-110+50 \sqrt{5}}}{2}\right.}{25}
$$

$$
-\frac{\operatorname{arctanh}\left(\frac{\sqrt{x} \sqrt{-2+2 \sqrt{5}}}{2}\right) \sqrt{110+50 \sqrt{5}}}{25}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{x^{2}-1} \sqrt{2+2 \sqrt{5}}}{2-x-x \sqrt{5}}\right) \sqrt{110+50 \sqrt{5}}}{50}
$$

Result(type 3, 901 leaves):

$$
\begin{aligned}
& 6 \sqrt{5} \operatorname{arctanh}\left(\frac{2\left(1+\sqrt{5}+(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)\right)}{\sqrt{2+2 \sqrt{5}} \sqrt{4\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+4(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+2+2 \sqrt{5}}}\right) \\
& 25 \sqrt{2+2 \sqrt{5}} \\
& -\sqrt{5} \arctan \left(\frac{2\left(1-\sqrt{5}+(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)\right)}{\left.\sqrt{-2+2 \sqrt{5}} \sqrt{4\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+4(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+2-2 \sqrt{5}}\right)}\right. \\
& 25 \sqrt{-2+2 \sqrt{5}} \\
& -\sqrt{\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
& 5\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right) \\
& +\frac{2 \arctan \left(\frac{2\left(1-\sqrt{5}+(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)\right)}{\left.\sqrt{-2+2 \sqrt{5}} \sqrt{4\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+4(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+2-2 \sqrt{5}}\right)} \sqrt{5\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) \sqrt{-2+2 \sqrt{5}}}\right.}{\sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{2\left(1-\sqrt{5}+(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)\right)}{\left.\sqrt{-2+2 \sqrt{5}} \sqrt{4\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+4(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+2-2 \sqrt{5}}\right)} \\
& +\frac{\sqrt{5} \sqrt{\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+(-\sqrt{5}+1)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+\frac{1}{2}-\frac{\sqrt{5}}{2}}-\sqrt{\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+\frac{1}{2}+\frac{\sqrt{5}}{2}} . \sqrt{(x)}}{(x)} \\
& 5\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right) \quad 5\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right) \\
& 6 \operatorname{arctanh}\left(\frac{2\left(1+\sqrt{5}+(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)\right)}{\sqrt{2+2 \sqrt{5}} \sqrt{4\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+4(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+2+2 \sqrt{5}}}\right) \\
& 5\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) \sqrt{2+2 \sqrt{5}} \\
& 2 \operatorname{arctanh}\left(\frac{2\left(1+\sqrt{5}+(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)\right)}{\left.\sqrt{2+2 \sqrt{5}} \sqrt{4\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+4(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+2+2 \sqrt{5}}\right)} \sqrt{5}\right. \\
& 5\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) \sqrt{2+2 \sqrt{5}} \\
& -\frac{\sqrt{5} \sqrt{\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2}+(\sqrt{5}+1)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)+\frac{1}{2}+\frac{\sqrt{5}}{2}}}{5\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)}+\frac{2 \sqrt{x}}{5\left(x-\frac{\sqrt{5}}{2}-\frac{1}{2}\right)}-\frac{4 \operatorname{arctanh}\left(\frac{2 \sqrt{x}}{\sqrt{2+2 \sqrt{5}})}\right.}{5 \sqrt{2+2 \sqrt{5}}} \\
& -\frac{8 \operatorname{arctanh}\left(\frac{2 \sqrt{x}}{\sqrt{2+2 \sqrt{5}}}\right) \sqrt{5}}{25 \sqrt{2+2 \sqrt{5}}}+\frac{2 \sqrt{x}}{5\left(x+\frac{\sqrt{5}}{2}-\frac{1}{2}\right)}+\frac{4 \arctan \left(\frac{2 \sqrt{x}}{\sqrt{-2+2 \sqrt{5}}}\right)}{5 \sqrt{-2+2 \sqrt{5}}}-\frac{8 \arctan \left(\frac{2 \sqrt{x}}{\sqrt{-2+2 \sqrt{5}}}\right) \sqrt{5}}{25 \sqrt{-2+2 \sqrt{5}}}
\end{aligned}
$$

$$
\int \frac{\sqrt{x^{2}+\sqrt{x^{4}+1}}}{\sqrt{x^{4}+1}} \mathrm{~d} x
$$

Optimal(type 3, 24 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{x \sqrt{2}}{\sqrt{x^{2}+\sqrt{x^{4}+1}}}\right) \sqrt{2}}{2}
$$

Result(type 8, 23 leaves):

$$
\int \frac{\sqrt{x^{2}+\sqrt{x^{4}+1}}}{\sqrt{x^{4}+1}} d x
$$

Problem 6: Result unnecessarily involves higher level functions.

$$
\int \frac{\sqrt{-x^{2}+\sqrt{x^{4}+1}}}{\sqrt{x^{4}+1}} d x
$$

Optimal(type 3, 26 leaves, 2 steps):

$$
\frac{\arctan \left(\frac{x \sqrt{2}}{\sqrt{-x^{2}+\sqrt{x^{4}+1}}}\right) \sqrt{2}}{2}
$$

Result(type 5, 21 leaves):

$$
-\frac{\sqrt{2} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{3}{4}, \frac{5}{4}\right],\left[\frac{3}{2}, \frac{3}{2}\right],-\frac{1}{x^{4}}\right)}{4 x^{2}}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int\left(x+\sqrt{x^{2}+a}\right)^{b} \mathrm{~d} x
$$

Optimal(type 3, 44 leaves, 3 steps):

$$
-\frac{a\left(x+\sqrt{x^{2}+a}\right)^{-1+b}}{2(1-b)}+\frac{\left(x+\sqrt{x^{2}+a}\right)^{1+b}}{2(1+b)}
$$

Result(type 3, 119 leaves):

$$
\frac{a^{\frac{b}{2}+\frac{1}{2}} b\left(\frac{8 \sqrt{\pi} x^{1+b} a^{-\frac{b}{2}-\frac{1}{2}}\left(\frac{b a}{x^{2}}+b-1\right)\left(\sqrt{\frac{a}{x^{2}}+1}+1\right)^{-1+b}}{(1+b) b(-2+2 b)}+\frac{4 \sqrt{\pi} x^{1+b} a^{-\frac{b}{2}-\frac{1}{2}} \sqrt{\frac{a}{x^{2}}+1}\left(\sqrt{\frac{a}{x^{2}}+1}+1\right)^{-1+b}}{(1+b) b}\right)}{4 \sqrt{\pi}}
$$

Problem 9: Unable to integrate problem.

$$
\int\left(x-\sqrt{x^{2}+a}\right)^{b} \mathrm{~d} x
$$

Optimal(type 3, 48 leaves, 3 steps):

$$
-\frac{a\left(x-\sqrt{x^{2}+a}\right)^{-1+b}}{2(1-b)}+\frac{\left(x-\sqrt{x^{2}+a}\right)^{1+b}}{2(1+b)}
$$

Result(type 8, 15 leaves):

$$
\int\left(x-\sqrt{x^{2}+a}\right)^{b} \mathrm{~d} x
$$

Problem 11: Result unnecessarily involves higher level functions.

$$
\int \frac{\sqrt{x+\sqrt{a^{2}+x^{2}}}}{x} \mathrm{~d} x
$$

Optimal(type 3, 62 leaves, 6 steps):

$$
-2 \arctan \left(\frac{\sqrt{x+\sqrt{a^{2}+x^{2}}}}{\sqrt{a}}\right) \sqrt{a}-2 \operatorname{arctanh}\left(\frac{\sqrt{x+\sqrt{a^{2}+x^{2}}}}{\sqrt{a}}\right) \sqrt{a}+2 \sqrt{x+\sqrt{a^{2}+x^{2}}}
$$

Result(type 5, 24 leaves):

$$
2 \sqrt{2} \sqrt{x} \text { hypergeom }\left(\left[-\frac{1}{4},-\frac{1}{4}, \frac{1}{4}\right],\left[\frac{1}{2}, \frac{3}{4}\right],-\frac{a^{2}}{x^{2}}\right)
$$

Problem 12: Result unnecessarily involves higher level functions.

$$
\int \frac{1}{x\left(-x^{2}+1\right)^{2 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 45 leaves, 5 steps):

$$
-\frac{\ln (x)}{2}+\frac{3 \ln \left(1-\left(-x^{2}+1\right)^{1 / 3}\right)}{4}-\frac{\arctan \left(\frac{\left(1+2\left(-x^{2}+1\right)^{1 / 3}\right) \sqrt{3}}{3}\right) \sqrt{3}}{2}
$$

Result(type 5, 47 leaves):

$$
\frac{\left(\frac{\pi \sqrt{3}}{6}-\frac{3 \ln (3)}{2}+2 \ln (x)+\mathrm{I} \pi\right) \Gamma\left(\frac{2}{3}\right)+\frac{2 \Gamma\left(\frac{2}{3}\right) x^{2} \text { hypergeom }\left(\left[1,1, \frac{5}{3}\right],[2,2], x^{2}\right)}{3}}{2 \Gamma\left(\frac{2}{3}\right)}
$$

Problem 13: Unable to integrate problem.

$$
\int \frac{x}{(1+x)\left(-x^{3}+1\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 113 leaves, 3 steps):
$\frac{\ln \left((1-x)(1+x)^{2}\right) 2^{2 / 3}}{8}+\frac{\ln \left(x+\left(-x^{3}+1\right)^{1 / 3}\right)}{2}-\frac{3 \ln \left(-1+x+2^{2 / 3}\left(-x^{3}+1\right)^{1 / 3}\right) 2^{2 / 3}}{8}-\frac{\arctan \left(\frac{\left(1-\frac{2 x}{\left.\left(-x^{3}+1\right)^{1 / 3}\right) \sqrt{3}}\right)}{3}\right)}{3}$ $+\frac{\arctan \left(\frac{\left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3} 2^{2 / 3}}{4}$
Result(type 8, 18 leaves):

$$
\int \frac{x}{(1+x)\left(-x^{3}+1\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int \frac{1}{\left(x^{3}-3 x^{2}+7 x-5\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 67 leaves, ? steps):

$$
\frac{\ln (1-x)}{4}-\frac{3 \ln \left(1-x+\left(x^{3}-3 x^{2}+7 x-5\right)^{1 / 3}\right)}{4}+\frac{\arctan \left(\frac{\sqrt{3}}{3}+\frac{2(x-1) \sqrt{3}}{3\left(x^{3}-3 x^{2}+7 x-5\right)^{1 / 3}}\right) \sqrt{3}}{2}
$$

Result(type 8, 17 leaves):

$$
\int \frac{1}{\left(x^{3}-3 x^{2}+7 x-5\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 15: Unable to integrate problem.

$$
\int \frac{2-(1+k) x}{((1-x) x(-k x+1))^{1 / 3}(1-(1+k) x)} \mathrm{d} x
$$

Optimal(type 3, 86 leaves, ? steps):

$$
\left.\frac{\ln (x)}{2 k^{1 / 3}}+\frac{\ln (1-(1+k) x)}{2 k^{1 / 3}}-\frac{3 \ln \left(-k^{1 / 3} x+((1-x) x(-k x+1))^{1 / 3}\right)}{2 k^{1 / 3}}+\frac{\arctan \left(\frac{2 k^{1 / 3} x}{\left.((1-x) x(-k x+1))^{1 / 3}\right) \sqrt{3}}\right.}{3}\right) \sqrt{3}
$$

Result(type 8, 36 leaves):

$$
\int \frac{2-(1+k) x}{((1-x) x(-k x+1))^{1 / 3}(1-(1+k) x)} \mathrm{d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{c x^{2}+b x+a}{\left(x^{2}-x+1\right)\left(-x^{3}+1\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 392 leaves, 19 steps):
$\frac{(a+b) \ln \left((1-x)(1+x)^{2}\right) 2^{2 / 3}}{24}-\frac{(a-c) \ln \left(x^{3}+1\right) 2^{2 / 3}}{12}-\frac{(b+c) \ln \left(x^{3}+1\right) 2^{2 / 3}}{12}+\frac{(a+b) \ln \left(1+\frac{2^{2 / 3}(1-x)^{2}}{\left.\left(-x^{3}+1\right)^{2 / 3}-\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{2 / 3}}\right.}{12}$

$$
-\frac{(a+b) \ln \left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{2 / 3}}{6}+\frac{(b+c) \ln \left(2^{1 / 3}-\left(-x^{3}+1\right)^{1 / 3}\right) 2^{2 / 3}}{4}+\frac{(a-c) \ln \left(-2^{1 / 3} x-\left(-x^{3}+1\right)^{1 / 3}\right) 2^{2 / 3}}{4}
$$

$$
+\frac{c \ln \left(x+\left(-x^{3}+1\right)^{1 / 3}\right)}{2}-\frac{(a+b) \ln \left(-1+x+2^{2 / 3}\left(-x^{3}+1\right)^{1 / 3}\right) 2^{2 / 3}}{8}+\frac{(a+b) \arctan \left(\frac{\left(1-\frac{22^{1 / 3}(1-x)}{\left.\left(-x^{3}+1\right)^{1 / 3}\right) \sqrt{3}}\right.}{3}\right) 2^{2 / 3} \sqrt{3}}{6}
$$

$$
+\frac{(a+b) \arctan \left(\frac{\left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) 2^{2 / 3} \sqrt{3}}{12}-\frac{c \arctan \left(\frac{\left(1-\frac{2 x}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}
$$

$$
-\frac{(a-c) \arctan \left(\frac{\left(1-\frac{22^{1 / 3} x}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) 2^{2 / 3} \sqrt{3}}{6}+\frac{(b+c) \arctan \left(\frac{\left(1+2^{2 / 3}\left(-x^{3}+1\right)^{1 / 3}\right) \sqrt{3}}{3}\right) 2^{2 / 3} \sqrt{3}}{6}
$$

Result(type 8, 32 leaves):

$$
\int \frac{c x^{2}+b x+a}{\left(x^{2}-x+1\right)\left(-x^{3}+1\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 18: Unable to integrate problem.

$$
\int \frac{1}{x\left(3 x^{2}-6 x+4\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal (type 3, 76 leaves, 1 step):

$$
-\frac{\ln (x) 2^{1 / 3}}{4}+\frac{\ln \left(6-3 x-32^{1 / 3}\left(3 x^{2}-6 x+4\right)^{1 / 3}\right) 2^{1 / 3}}{4}+\frac{\arctan \left(-\frac{\sqrt{3}}{3}-\frac{2^{2 / 3}(2-x) \sqrt{3}}{3\left(3 x^{2}-6 x+4\right)^{1 / 3}}\right) 2^{1 / 3} \sqrt{3}}{6}
$$

Result(type 8, 18 leaves):

$$
\int \frac{1}{x\left(3 x^{2}-6 x+4\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 19: Unable to integrate problem.

$$
\int \frac{\left(-x^{3}+1\right)^{1 / 3}}{1+x} \mathrm{~d} x
$$

Optimal(type 3, 381 leaves, 25 steps):

$$
\left(-x^{3}+1\right)^{1 / 3}-\frac{2^{1 / 3} \ln \left(x^{3}+1\right)}{3}+\frac{\ln \left(2^{2 / 3}+\frac{x-1}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{1 / 3}}{6}-\frac{\ln \left(1+\frac{2^{2 / 3}(1-x)^{2}}{\left(-x^{3}+1\right)^{2 / 3}}-\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{1 / 3}}{6}
$$

$$
+\frac{2^{1 / 3} \ln \left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right)}{3}-\frac{\ln \left(22^{1 / 3}+\frac{(1-x)^{2}}{\left(-x^{3}+1\right)^{2 / 3}}+\frac{2^{2 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{1 / 3}}{12}+\frac{\ln \left(2^{1 / 3}-\left(-x^{3}+1\right)^{1 / 3}\right) 2^{1 / 3}}{2}
$$

$$
-\frac{\ln \left(-x-\left(-x^{3}+1\right)^{1 / 3}\right)}{2}+\frac{\ln \left(-2^{1 / 3} x-\left(-x^{3}+1\right)^{1 / 3}\right) 2^{1 / 3}}{2}+\frac{2^{1 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}
$$

$$
+\frac{\arctan \left(\frac{\left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) 2^{1 / 3} \sqrt{3}}{6}-\frac{\arctan \left(\frac{\left(1-\frac{2 x}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}+\frac{2^{1 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3} x}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}
$$

$$
-\frac{2^{1 / 3} \arctan \left(\frac{\left(1+2^{2 / 3}\left(-x^{3}+1\right)^{1 / 3}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}
$$

Result(type 8, 58 leaves):

$$
-\frac{x^{3}-1}{\left(-x^{3}+1\right)^{2 / 3}}+\frac{\left(\int \frac{x^{2}+1}{(1+x)\left(\left(x^{3}-1\right)^{2}\right)^{1 / 3}} \mathrm{~d} x\right)\left(\left(x^{3}-1\right)^{2}\right)^{1 / 3}}{\left(-x^{3}+1\right)^{2 / 3}}
$$

Problem 22: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sqrt{-x^{4}+1}}{x^{4}+1} d x
$$

Optimal(type 3, 41 leaves, 1 step):

$$
\frac{\arctan \left(\frac{x\left(x^{2}+1\right)}{\sqrt{-x^{4}+1}}\right)}{2}+\frac{\operatorname{arctanh}\left(\frac{x\left(-x^{2}+1\right)}{\sqrt{-x^{4}+1}}\right)}{2}
$$

Result(type 3, 99 leaves):

$$
-\frac{\arctan \left(\frac{\sqrt{-x^{4}+1}}{x}+1\right)}{4}+\frac{\arctan \left(-\frac{\sqrt{-x^{4}+1}}{x}+1\right)}{4}-\frac{\ln \left(\frac{\frac{-x^{4}+1}{2 x^{2}}-\frac{\sqrt{-x^{4}+1}}{x}+1}{\frac{\sqrt{-x^{4}+1}}{x}+\frac{-x^{4}+1}{2 x^{2}}+1}\right)}{8}
$$

Problem 23: Unable to integrate problem.

$$
\int \frac{b x+a}{\left(-x^{2}+2\right)\left(x^{2}-1\right)^{1 / 4}} \mathrm{~d} x
$$

Optimal(type 3, 62 leaves, 7 steps):

$$
-b \arctan \left(\left(x^{2}-1\right)^{1 / 4}\right)+b \operatorname{arctanh}\left(\left(x^{2}-1\right)^{1 / 4}\right)+\frac{a \arctan \left(\frac{x \sqrt{2}}{2\left(x^{2}-1\right)^{1 / 4}}\right) \sqrt{2}}{4}+\frac{a \operatorname{arctanh}\left(\frac{x \sqrt{2}}{2\left(x^{2}-1\right)^{1 / 4}}\right) \sqrt{2}}{4}
$$

Result(type 8, 24 leaves):

$$
\int \frac{b x+a}{\left(-x^{2}+2\right)\left(x^{2}-1\right)^{1 / 4}} \mathrm{~d} x
$$

Problem 24: Unable to integrate problem.

$$
\int \frac{1}{\left(-x^{2}+1\right)^{1 / 3}\left(x^{2}+3\right)} d x
$$

Optimal(type 3, 81 leaves, 1 step):

$$
-\frac{\operatorname{arctanh}(x) 2^{1 / 3}}{12}+\frac{\operatorname{arctanh}\left(\frac{x}{1+2^{1 / 3}\left(-x^{2}+1\right)^{1 / 3}}\right) 2^{1 / 3}}{4}+\frac{\arctan \left(\frac{\sqrt{3}}{x}\right) 2^{1 / 3} \sqrt{3}}{12}+\frac{\arctan \left(\frac{\left(1-2^{1 / 3}\left(-x^{2}+1\right)^{1 / 3}\right) \sqrt{3}}{x}\right) 2^{1 / 3} \sqrt{3}}{12}
$$

Result(type 8, 19 leaves):

$$
\int \frac{1}{\left(-x^{2}+1\right)^{1 / 3}\left(x^{2}+3\right)} \mathrm{d} x
$$

Problem 25: Unable to integrate problem.

$$
\int \frac{1}{\left(-x^{2}+3\right)\left(x^{2}+1\right)^{1 / 3}} d x
$$

Optimal(type 3, 77 leaves, 1 step):

$$
-\frac{\arctan (x) 2^{1 / 3}}{12}+\frac{\arctan \left(\frac{x}{1+2^{1 / 3}\left(x^{2}+1\right)^{1 / 3}}\right) 2^{1 / 3}}{4}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{3}}{x}\right) 2^{1 / 3} \sqrt{3}}{12}-\frac{\operatorname{arctanh}\left(\frac{\left(1-2^{1 / 3}\left(x^{2}+1\right)^{1 / 3}\right) \sqrt{3}}{x}\right) 2^{1 / 3} \sqrt{3}}{12}
$$

Result(type 8, 19 leaves):

$$
\int \frac{1}{\left(-x^{2}+3\right)\left(x^{2}+1\right)^{1 / 3}} d x
$$

Problem 26: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{1+x-\sqrt{3}}{(1+x+\sqrt{3}) \sqrt{-4+x^{4}+4 x^{2} \sqrt{3}}} \mathrm{~d} x
$$

Optimal(type 3, 47 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{(1+x-\sqrt{3})^{2}}{\sqrt{-9+6 \sqrt{3}} \sqrt{-4+x^{4}+4 x^{2} \sqrt{3}}}\right) \sqrt{-3+2 \sqrt{3}}}{3}
$$

Result(type 4, 326 leaves):
$\frac{\sqrt{1-\left(\frac{\sqrt{3}}{2}-1\right) x^{2}} \sqrt{1-\left(1+\frac{\sqrt{3}}{2}\right) x^{2}} \operatorname{EllipticF}\left(x\left(\frac{\mathrm{I} \sqrt{3}}{2}-\frac{\mathrm{I}}{2}\right), \mathrm{I} \sqrt{1+4 \sqrt{3}\left(1+\frac{\sqrt{3}}{2}\right)}\right)}{\left(\frac{\mathrm{I} \sqrt{3}}{2}-\frac{\mathrm{I}}{2}\right) \sqrt{-4+x^{4}+4 x^{2} \sqrt{3}}}-2 \sqrt{3}$

$$
\begin{aligned}
& \left.-\frac{\operatorname{arctanh}\left(\frac{4 \sqrt{3}(-1-\sqrt{3})^{2}-8+4 x^{2} \sqrt{3}+2 x^{2}(-1-\sqrt{3})^{2}}{2 \sqrt{(-1-\sqrt{3})^{4}+4 \sqrt{3}(-1-\sqrt{3})^{2}-4} \sqrt{-4+x^{4}+4 x^{2} \sqrt{3}}}\right)}{2 \sqrt{(-1-\sqrt{3})^{4}+4 \sqrt{3}(-1-\sqrt{3})^{2}-4}}\right) \\
& \left.-\frac{\sqrt{1-\left(\frac{\sqrt{3}}{2}-1\right) x^{2}} \sqrt{1-\left(1+\frac{\sqrt{3}}{2}\right) x^{2}} \operatorname{EllipticPi}\left(\sqrt{\frac{\sqrt{3}}{2}-1} x, \frac{\left.\sqrt{\frac{\sqrt{3}}{2}}-1\right)(-1-\sqrt{3})^{2}}{\sqrt{\frac{\sqrt{3}}{2}}-\frac{\sqrt{\frac{\sqrt{3}}{2}}}{2}}\right)}{\left.\sqrt{\frac{\sqrt{3}}{2}}\right)}\right)
\end{aligned}
$$

Problem 27: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int \frac{1+x+\sqrt{3}}{(1+x-\sqrt{3}) \sqrt{-4+x^{4}-4 x^{2} \sqrt{3}}} \mathrm{~d} x
$$

Optimal(type 3, 45 leaves, 2 steps):

$$
-\frac{\arctan \left(\frac{(1+x+\sqrt{3})^{2}}{\sqrt{9+6 \sqrt{3}} \sqrt{-4+x^{4}-4 x^{2} \sqrt{3}}}\right) \sqrt{3+2 \sqrt{3}}}{3}
$$

Result(type 4, 310 leaves):

$$
\frac{\sqrt{1-\left(-1-\frac{\sqrt{3}}{2}\right) x^{2}} \sqrt{1-\left(-\frac{\sqrt{3}}{2}+1\right) x^{2}} \operatorname{EllipticF}\left(x\left(\frac{\mathrm{I}}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right), \mathrm{I} \sqrt{1-4 \sqrt{3}\left(-\frac{\sqrt{3}}{2}+1\right)}\right)}{\left(\frac{\mathrm{I}}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right) \sqrt{-4+x^{4}-4 x^{2} \sqrt{3}}}+2 \sqrt{3}
$$

$$
\begin{aligned}
& \left.-\frac{\operatorname{arctanh}\left(\frac{-4 \sqrt{3}(\sqrt{3}-1)^{2}-8-4 x^{2} \sqrt{3}+2 x^{2}(\sqrt{3}-1)^{2}}{2 \sqrt{(\sqrt{3}-1)^{4}-4 \sqrt{3}(\sqrt{3}-1)^{2}-4} \sqrt{-4+x^{4}-4 x^{2} \sqrt{3}}}\right)}{2 \sqrt{(\sqrt{3}-1)^{4}-4 \sqrt{3}(\sqrt{3}-1)^{2}-4}}\right) \\
& \left.-\frac{\sqrt{1-\left(-1-\frac{\sqrt{3}}{2}\right) x^{2}} \sqrt{1-\left(-\frac{\sqrt{3}}{2}+1\right) x^{2}} \operatorname{EllipticPi}\left(\sqrt{-1-\frac{\sqrt{3}}{2}} x, \frac{1}{\left(-1-\frac{\sqrt{3}}{2}\right)(\sqrt{3}-1)^{2}}, \frac{\sqrt{-\frac{\sqrt{3}}{2}+1}}{\sqrt{-1-\frac{\sqrt{3}}{2}}}(\sqrt{3}-1) \sqrt{-4+x^{4}-4 x^{2} \sqrt{3}}\right.}{2}\right)
\end{aligned}
$$

Problem 28: Unable to integrate problem.

$$
\int \frac{x^{2}}{\left(-x^{3}+1\right)^{1 / 3}\left(x^{3}+1\right)} \mathrm{d} x
$$

Optimal(type 3, 62 leaves, 5 steps):

$$
-\frac{\ln \left(x^{3}+1\right) 2^{2 / 3}}{12}+\frac{\ln \left(2^{1 / 3}-\left(-x^{3}+1\right)^{1 / 3}\right) 2^{2 / 3}}{4}+\frac{\arctan \left(\frac{\left(1+2^{2 / 3}\left(-x^{3}+1\right)^{1 / 3}\right) \sqrt{3}}{3}\right) 2^{2 / 3} \sqrt{3}}{6}
$$

Result(type 8, 22 leaves):

$$
\int \frac{x^{2}}{\left(-x^{3}+1\right)^{1 / 3}\left(x^{3}+1\right)} d x
$$

Problem 29: Unable to integrate problem.

$$
\int \frac{1+x}{\left(x^{2}-x+1\right)\left(-x^{3}+1\right)^{1 / 3}} \mathrm{~d} x
$$

Optimal(type 3, 109 leaves, ? steps):

$$
\frac{\ln \left(1+\frac{2^{2 / 3}(1-x)^{2}}{\left(-x^{3}+1\right)^{2 / 3}}-\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{2 / 3}}{4}-\frac{\ln \left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{2 / 3}}{2}+\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3} 2^{2 / 3}}{2}
$$

Result(type 8, 25 leaves):

$$
\int \frac{1+x}{\left(x^{2}-x+1\right)\left(-x^{3}+1\right)^{1 / 3}} d x
$$

Problem 30: Unable to integrate problem.

$$
\int \frac{(1+x)^{2}}{\left(-x^{3}+1\right)^{1 / 3}\left(x^{3}+1\right)} d x
$$

Optimal(type 3, 109 leaves, ? steps):

$$
\frac{\ln \left(1+\frac{2^{2 / 3}(1-x)^{2}}{\left(-x^{3}+1\right)^{2 / 3}}-\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{2 / 3}}{4}-\frac{\ln \left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{2 / 3}}{2}+\frac{\arctan \left(\frac{\left(1-\frac{22^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3} 2^{2 / 3}}{2}
$$

Result(type 8, 24 leaves):

$$
\int \frac{(1+x)^{2}}{\left(-x^{3}+1\right)^{1 / 3}\left(x^{3}+1\right)} d x
$$

Problem 31: Unable to integrate problem.

$$
\int \frac{\left(x^{2}-x+1\right)\left(-x^{3}+1\right)^{2 / 3}}{x^{3}+1} \mathrm{~d} x
$$

Optimal(type 5, 138 leaves, 6 steps):
$\frac{\left(-x^{3}+1\right)^{2 / 3}}{2}+\frac{x^{2} \text { hypergeom }\left(\left[\frac{1}{3}, \frac{2}{3}\right],\left[\frac{5}{3}\right], x^{3}\right)}{2}-\frac{\ln \left((1-x)(1+x)^{2}\right) 2^{2 / 3}}{4}-\frac{\ln \left(x+\left(-x^{3}+1^{1 / 3}\right)\right.}{2}+\frac{3 \ln \left(-1+x+2^{2 / 3}\left(-x^{3}+1\right)^{1 / 3}\right) 2^{2 / 3}}{4}$

$$
+\frac{\arctan \left(\frac{\left(1-\frac{2 x}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3}}{3}-\frac{\arctan \left(\frac{\left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) \sqrt{3} 2^{2 / 3}}{2}
$$

Result(type 8, 39 leaves):

$$
-\frac{x^{3}-1}{2\left(-x^{3}+1\right)^{1 / 3}}+\int \frac{x^{2}+1}{(1+x)\left(-x^{3}+1\right)^{1 / 3}} \mathrm{~d} x
$$

Problem 32: Unable to integrate problem.

$$
\int \frac{\left(-x^{3}+1\right)^{1 / 3}}{x^{3}+1} \mathrm{~d} x
$$

Optimal(type 3, 213 leaves, 14 steps):

$$
\begin{aligned}
& \frac{\ln \left(2^{2 / 3}+\frac{x-1}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{1 / 3}}{6}-\frac{\ln \left(1+\frac{2^{2 / 3}(1-x)^{2}}{\left(-x^{3}+1\right)^{2 / 3}}-\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) 2^{1 / 3}}{6}+\frac{2^{1 / 3} \ln \left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right)}{3} \\
& \quad-\frac{\ln \left(22^{1 / 3}+\frac{(1-x)^{2}}{\left(-x^{3}+1\right)^{2 / 3}}+\frac{2^{2 / 3}(1-x)}{\left.\left(-x^{3}+1\right)^{1 / 3}\right)} 2^{1 / 3}\right.}{12}+\frac{2^{1 / 3} \arctan \left(\frac{\left(1-\frac{22^{1 / 3}(1-x)}{\left.\left(-x^{3}+1\right)^{1 / 3}\right) \sqrt{3}}\right) \sqrt{3}}{3}\right.}{3} \\
& \quad+\frac{\arctan \left(\frac{\left(1+\frac{2^{1 / 3}(1-x)}{\left(-x^{3}+1\right)^{1 / 3}}\right) \sqrt{3}}{3}\right) 2^{1 / 3} \sqrt{3}}{6}
\end{aligned}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\left(-x^{3}+1\right)^{1 / 3}}{x^{3}+1} \mathrm{~d} x
$$

Test results for the 3 problems in "Wester Problems.txt"
Summary of Integration Test Results
524 integration problems

A - 409 optimal antiderivatives
B - 52 more than twice size of optimal antiderivatives
C - 14 unnecessarily complex antiderivatives
D - 49 unable to integrate problems
E - O integration timeouts

